
ABSTRACT

PICKLES, AUSTIN JOSIAH. Electromagnetic Energy Localization and Characterization
of Composites. (Under the direction of Dr. Michael Steer.)

This dissertation examines the electromagnetic (EM) properties of two component

composites. These composites exhibit varying degrees of complexity, ranging from those

containing single cube inclusions to those consisting of hundreds of irregularly shaped

inclusions in a disordered arrangement. Specifically, time-domain EM modeling is used

as a tool to calculate effective permittivity as well as EM localization behavior for these

mixtures.

For single inclusion mixtures with high permittivity contrast between the inclusion

and the surrounding matrix material, strong deviation from established mixing theories is

found. It is also shown that the orientation of the inclusion impacts the effective electrical

permittivity of the composite. Electric fields are found to localize on the edges and corners

of an irregular inclusion independent of simulation boundary conditions.

Increasing the complexity of the studied mixtures, the EM properties are then ana-

lyzed for mixtures containing many irregularly- and regularly-shaped inclusion crystals.

A strong correlation between effective permittivity and cross-sectional area is found for

these mixtures. With hundreds of inclusion crystals (with either irregular or cube shapes),

the change in inclusion shape causes negligible differences in effective permittivity.

Electric energy density localizes on edges and corners of inclusions regardless of in-

clusion shape. A result not highlighted by single inclusion mixtures, for composites con-

taining numerous inclusions significant increases in energy localization are observed as

the EM signal travels through more inclusions. This increase in hotspot magnitude is

observed for complex mixtures with hundreds of disordered irregularly shaped inclusion
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crystals. The same behavior is also observed for the much simpler scenario of a few dozen

cube inclusions distributed within discrete parallel planes. As a result, a key conclusion

from this work is that the study of hotspots does not require the use of geometrically

complex structures with hundreds of irregular inclusions. Rather, much simpler arrange-

ments of fewer and regularly shaped inclusions can be analyzed since they exhibit similar

energy localization behavior.
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Chapter 1

Introduction

1.1 Overview

Studies of the analysis and detection of energetic materials [1]–[5] are of substantial

importance. To aid in this research, it is important to be able to model and analyze

component mixtures. To understand the EM characteristics of such materials, it is nec-

essary to understand the coupling of EM energy into random mediums with specific

structures including energetic or explosive materials and organic compounds. Analysis of

the concentration of EM energy is significant because such a concentration could result

in increased vapor pressure from organic composites, making it easier to detect these

materials.

Specifically, it takes relatively little energy to release energy in metastable bonds in

a material. If a hotspot is introduced into an energetic material it can heat up. The

following research seeks to further understand the behavior of such localization, as well

as general EM properties of component mixtures.
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1.2 Motivations

An important goal of this research is to further explore the coupling of EM energy into

disordered and random mediums. To aid in this understanding the objectives of this

research are to understand if these hotspots occur at certain locations and what condi-

tions lead to increased hotspot magnitudes. Realistic crystalline composites can contain

crystals with various sizes, and these crystals can be both regular and irregular in shape.

So, another objective of this research is to determine how the shape and distribution

of crystals affects how energy is stored within a mixture. The next section discusses an

important type of mixture that is especially relevant today, namely explosive or energetic

materials.

1.2.1 Explosive Materials

In general terms, a chemical explosive can be defined as “a compound or a mixture of

compounds which, when subjected to heat, impact, friction, or shock, undergoes very

rapid, self-propagating, heat-producing decomposition” [6]. EM radiation incident on an

explosive or energetic material can cause a release of energy that has the potential to be

damaging to a target [6]. Energy can be defined as either potential, which measures the

ability of doing work, or kinetic, which is the energy of motion [6]. Explosives such as

trinitrotoluene (TNT) have chemical bonds that are relatively unstable [6]. So, chemical

potential energy exists that can be turned into kinetic energy under the right conditions

[6]. The detonation of the explosive brings stability to the chemical bonds, leading to

kinetic energy achieved through blast and thermal energy release [6]. Since overall there

is a production of energy, the process of changing the bonds of a chemical system to a

greater amount of stability is an exothermal process [6].
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High explosives (HEs) will detonate, which occurs when the reaction is moving through

the explosive faster than the speed of sound in the explosive that has not reacted [6].

Low-order explosives (LEs) will deflagrate or rapidly burn with a reaction that is slower

than the speed of sound in the explosive that is unreacted [6]. Almost all commercially

available explosives, not including black powder, are HEs [6].

Research Department Explosive (RDX) is a combination of a crystalline explosive and

a binder, which is often a plastic material [6]. High Melt Explosive (HMX) is chemically

similar to RDX [6]. RDX and HMX are part of a group of organic nitrate explosives

called nitramines [7]. The study of energetic materials is an important movitation of this

research. HMX is of widespread importance, being the “highest-energy solid explosive

produced on a large scale in the United States” [7]. In addition, the Navy uses HMX as

a plastic-bonded explosive ingredient [7].

Improvised Explosive Devices (IEDs) are of significant concern in places such as Iraq

[8]. IEDs in Iraq can be initiated with a device such as a cell phone that triggers the IED

to go off [8]. In practice there are several methods for disarming an IED including using

EM pulses [8]. As a method for either disabling or destroying an IED, a high energy EM

pulse can cause the trigger of an IED to “fail open” and not induce an explosion or “fail

closed” and detonate the IED [8]. However, very cheap countermeasures can be used

to counter attempts at destroying or disabling IEDs [8]. Clearly, additional methods

are required. Since EM energy can be used to destroy or disable explosive devices, it

is important to gain further understanding of how this energy behaves within random

mixtures. To that end, an important motivation of this research is the need to study

how energy is stored in three-dimensional random mixtures, including those mixtures

containing the energetic material HMX. HMX is a type of polymer bonded explosive

(PBX), which is a combination of a polymeric binder with explosive crystals [9]. The EM
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properties of HMX crystals, as well as their sizes based on [9], will be used here to study

realistic crystalline mixtures.

A motivation in studying combinations of variously-sized crystals is that if hotspots

can be introduced into a material using EM signals, the crystal phase state in the material

can be altered. This has various implications including IED destruction or disablement.

The energy storage capabilities of mixtures will also be investigated with studies of ef-

fective permittivity of composites.

1.2.2 Broader Impact

The research described in this dissertation also has various other applications that extend

beyond energetic materials. One such application, which can be related to composites

with randomly oriented and distributed inclusions, is the next generation of aerospace-

qualified Carbon Fiber Reinforced Composites (CFRCs). While still at least a decade

away, these composites will utilize random fibers and will not delaminate (or separate

into layers), coming with a greatly reduced cost and increased reliability. This research

can also be related to several other applications including the characterization of solid

rocket fuel, the demolition of either visible or buried structures, remote interrogation,

and demining.

1.2.3 Technical Approach

In this research CST Microwave Studio [10] will provide the basis for studying three-

dimensional mixtures. CST Microwave Studio is a software tool for high frequency appli-

cations that provides 3D EM simulations. It will also serve as a useful tool for studying

the permittivity of composites. Specifically, the time-domain solver in CST Microwave
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Studio, utilizing the finite integration technique (FIT), will be utilized. The time-domain

solver allows energy distributions to be studied as a function of time.

Utilizing CST Microwave Studio, materials will be modeled with various permittivi-

ties, shapes, sizes, and orientations to show how these characteristics impact the permit-

tivities and energy storage behavior of composite mixtures. The crystals that are part of

these mixtures will be given material properties of realistic materials including HMX.

1.3 Original Contributions

The original contributions of this dissertation are summarized here.

1. Two-component composites are studied involving both regularly- and irregularly-

shaped inclusions. The orientation of inclusions is shown to affect the effective

electrical permittivity of mixtures. This is presented in Chapter 3.

2. Structures are analyzed involving many scaled and rotated inclusion crystals with

both regular and irregular shapes. These complex structures are simulated in CST

Microwave Studio with EM analysis of energy localization behavior and effective

permittivity. This is presented in Chapter 4.

3. The effective permittivity of composite mixtures is found to be highly correlated

to the cross-sectional area of the inclusion crystals within the mixture. This is

presented in Sections 3.6 and 4.6.

4. Effective permittivity is compared between mixtures involving many regularly- and

irregularly-shaped inclusions. With hundreds of inclusions the effective permittivity

is found to be independent of inclusion shape. This is presented in Section 4.5.

5



5. Both disordered and more organized arrangements of inclusions show EM localiza-

tion on inclusion edges and corners. This is presented in Section 4.7.

6. Increased hotspot magnitude is found in composites containing many inclusions as

the EM signal travels through more inclusions (a result not highlighted by single

inclusion mixtures). This is presented in Section 4.7.

1.4 Outline of Dissertation

Chapter 2 of this dissertation provides a literature review of topics related to effective

permittivity and localization of EM energy.

Chapter 3 studies two-component composites with regularly- and irregularly-shaped

inclusion crystals. This chapter focuses on the relatively simpler scenarios of a single

irregular inclusion and cube-shaped inclusions placed on an ordered grid. With high per-

mittivity contrast between inclusion and matrix material, it is shown that the orientation

of the inclusion affects the effective relative permittivity of the mixture. Fields are found

to localize at edges and corners of the irregular inclusion independent of the simulation

boundary conditions.

Chapter 4 investigates the EM properties of complex mixtures involving many crystals

of regular and irregular shapes. The Bullet physics library [11], a physics engine commonly

used for computer games, is used to create randomized combinations of many crystals.

This automated procedure leads to a higher packing of crystals than can be obtained

reasonably with manual creation. With high permittivity contrast between inclusions

and matrix material, effective permittivity is found to deviate from established mixing

theories. With hundreds of irregular or cube inclusion crystals within a mixture, the

impact of individual inclusion shape averages out. Surrounding inclusions are found to
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impact the electric energy localization within the mixtures, with higher localization seen

after the EM signal has traveled through more inclusion crystals.

Chapter 5 provides a summary of the research presented and suggests areas for future

study.

1.5 Published Works

The work outlined in this dissertation led to the following journal papers.

1.5.1 Journal Papers

1. © 2013 IEEE. Reprinted, with permission, from A. J. Pickles and M. B. Steer,

“Effective permittivity of 3-D periodic composites with regular and irregular inclu-

sions,” IEEE Access, vol. 1, pp. 523–536, 2013.

2. © 2013 IEEE. Reprinted, with permission, from A. J. Pickles, I. M. Kilgore, and M.

B. Steer, “Automated creation of complex three-dimensional composite mixtures

for use in electromagnetic simulation,” IEEE Access, vol. 1, pp. 248–251, 2013.

3. © 2013 IEEE. Reprinted, with permission, from A. J. Pickles, I. M. Kilgore, and M.

B. Steer, “Electromagnetic properties of disordered three-dimensional mixtures,”

IEEE Access, submitted for publication, September 2013.

7



Chapter 2

Literature Review

2.1 Introduction

The main topics explored in the following chapters are effective permittivity and EM

energy localization. This chapter begins by introducing the concepts of permittivity and

effective permittivity. An overview is provided of the study of effective permittivity over

the past few centuries, culminating with the sophisticated computer software used today

for studying effective permittivity. Finally, this chapter presents an overview of research

related to studies of effective permittivity and energy localization.

2.2 Permittivity

2.2.1 Introduction

First, this section defines the concept of permittivity as referenced in this dissertation,

beginning with an overview of the related topics of electric fields and dielectrics.
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2.2.2 Electric Field, Dielectrics, and Permittivity

If a point charge, Q, exists and experiences a force, F , due to additional charges, the

electric field, E, is defined as [12]

E =
F

Q
. (2.1)

From Equation 2.1, the electric field direction and the direction of the force exerted by

the field on a positively charged particle are the same [12]. The attraction of opposite

charges and the repulsion of like charges means the electric field points from positive

charges and to negative charges [12].

When an electric field is applied to a group of materials known as dielectrics [13],

which are insulators, the dielectric can be polarized. Dielectric polarization occurs when

charges shift from their original positions due to the applied electric field [13]. There is not

a flow of charges like in a conductor, but rather the dielectric polarization causes positive

charges to move towards the field and negative charges to move away from the field

[13]. This newly formed separation of charges in the dielectric creates an internal electric

field that points in the opposite direction to the applied electric field, thus reducing

the overall field in the dielectric [13]. A dielectric material has energy storing capacity

through polarization, such as the material between a capacitor’s metallic plates [13]. The

surface charge of the capacitor is increased when an electric field is applied because the

dielectric becomes polarized [13].

The term “insulator” generally is implied to have a low amount of electrical conduc-

tion, while “dielectrics” have a high amount of polarizability, measured by the dielectric

constant [13]. The dielectric constant, or static relative permittivity, is the relative per-

mittivity exhibited by a material when at zero frequency [14]. However, dielectric constant

could refer to the static or frequency-dependent relative permittivity based on context

9



[14].

Permittivity, ε, is a measure of a material’s ability to “permit” an electric field [15].

The permittivity in vacuum is ε0 [14]. The relative permittivity, εr, as a function of

angular frequency, ω, is defined as [14]

εr(ω) =
ε(ω)

ε0
. (2.2)

From Equation 2.2, the relative permittivity of a material is a ratio of how much electric

energy is stored in the material when a voltage is applied, ε(ω), relative to how much

is stored in a vacuum, ε0 [14]. Relative permittivity is generally complex, and the imag-

inary part of the permittivity causes EM attenuation inside the medium [14]. Relative

permittivity for materials with loss is defined as [14]

εr = εreal +
σ

ωε0
. (2.3)

In Equation 2.3, εreal is the real part of the relative permittivity and σ is the conductivity

[14]. The loss tangent is defined as the ratio of the imaginary over the real part of the

permittivity [16]. Having defined the concept of permittivity, the next section provides

an overview of how the study of permittivity has evolved.

2.3 Effective Permittivity

2.3.1 Introduction

While permittivity is a useful parameter to describe the electric energy storage ability

of individual materials, as summarized in the previous section, an additional concept is
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necessary to describe the overall permittivity of a mixture that contains more than one

material. This concept is described by effective permittivity. Exploration of the effective

permittivity of a composite medium is a major focus of the research presented in the

following chapters of this dissertation.

This section provides an overview of how the study of effective permittivity has

evolved over the past few centuries, as discussed in detail in [17] and summarized here.

These stages include [17] the work of James Clerk Maxwell, the Maxwell Garnett mixing

law, Bruggeman’s work on the effective medium, bounding methods, and finally compu-

tation of electromagnetics with the use of computers. The use of sophisticated computer

software is especially relevant here since it is used for the research presented in the fol-

lowing chapters.

2.3.2 Early Work

In the late 19th century, James Clerk Maxwell was among the first to develop formulas

for the effective permittivity of heterostructures [17]. Maxwell [18] studied the variation

in potential for the simple scenario of a spherical inclusion of one material inside another

material [17]. Soon after, formulae were developed to describe approximately the proper-

ties of the effective medium with knowledge of the materials that made up the medium

[17]. Gladstone and Dale [19] utilized an approximation formula where the permittivity

of the mixture was linearly proportional to the volume taken up by and permittivity of

the components [17].

Analytic approaches, called mixing laws, to determining effective permittivity rely

on a volume average of individual permittivities [17]. While the volume fractions are

important parameters of mixing laws, internal sizes of the inclusions are not considered
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[17]. The accuracy and applicability of these laws has been questioned as they have

been limited to relatively simple scenarios that are dilute and geometrically simple [17],

[20]. This dissertation furthur studies the applicability of mixing laws by comparing the

simulated results to those predicted by the famous Maxwell Garnett mixing law [21].

2.3.3 Effective Medium Theories

Additional understanding of the properties of mixtures came with the development of

the effective medium approximation (EMA), significantly discussed by Bruggeman [22]

in 1935 [17]. Overall, “EMA approaches assume that each constituent is surrounded by

the same effective medium. It assumes that the local electric and magnetic fields are the

same in the volume occupied by each component in the composite. The basic understand-

ing appears to be that the fictitious replacement (effective) medium is macroscopically

equivalent to the real medium in its dielectric effects. The analysis is done in the approx-

imation of noninteracting inclusions (each inclusion is subject to the same mean field,

unperturbed by the presense of other inclusions)” [17]. EMA methods are applicable at

low volume fractions of inclusions with the assumptions that groupings or overlapping of

inclusions do not occur [17]. Since in the effective medium the energy density is seen to be

uniform throughout the entire volume, EMA methods break down at higher volume frac-

tions of inclusions since they do not take into account the interactions among the various

components of a mixture [17]. So, EMA approaches do not provide an all-encompassing

complete solution for the effective permittivity of two-component mixtures [17].

In regards to frequency, effective medium theories (EMTs) are valid in the quasistatic

limit, meaning that the wavelength is much larger than the linear dimensions of the

individual inclusions that make up the mixture [17]. So, although the wave cannot ‘see’
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the inclusions, the effective permittivity is still impacted by the inclusions [17].

2.3.4 Bounds on Permittivity

Another important advance in the theory of effective permittivity came with the estab-

lishment of rigorous bounds on the effective permittivity of two-component mixtures [17].

Absolute bounds for effective permittivity were developed by Wiener [23], occurring for

situations of inclusion layers perpendicular or parallel to the applied field [17].

2.3.5 Electromagnetics Aided by Computers

The development of computers has advanced EM study. Known as computational elec-

tromagnetics (CE), this area connects electromagnetism with materials science and com-

puter science [17]. Results taken from computer simulations can be used to confirm or

disprove EMTs, and suggest new areas that deserve further research [17]. Numerous CE

methods [17] have been used in effective permittivity investigations. These include Fourier

expansion [24], [25], Finite Difference Time Domain (FDTD) [26], [27], [28], finite element

(FE) [29], [30], [31], the transfer matrix method [32], and boundary-integral equations

(BIE) [33], [34], [35]. In a basic sense, these methods involve a combination of Maxwell’s

equations with a set of boundary conditions [17]. Sophisticated computer software, such

as CST Microwave Studio, can be used to gain greater understanding of the EM behavior

of complex component mixtures.

2.3.6 Summary

As outlined in this section, the development of mixing laws and EMAs were important

milestones in the study of effective permittivity. The results of the simulated effective
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permittivities in the following chapters will be compared to the Maxwell Garnett and

Bruggeman theories to further explore their applicability.

2.4 Research on Composite Mixtures

2.4.1 Introduction

The previous section covered previous research related to mixing laws and EMAs. This

section explores past and current research as it relates to the subject of effective permit-

tivity and EM energy localization in composite mixtures.

2.4.2 Effective Permittivity Research

Studies of effective permittivity have included mixtures organized in both two- and three-

dimensions. Research has been performed looking at component mixtures where the

inclusions have regular and symmetric shapes. Kärkkäinen, Sihvola, and Nikoskinen [36]

studied two-dimensional mixtures with inclusions in the shape of discs. The authors

utilized mixtures contained within a TEM (Transverse ElectroMagnetic) waveguide and

the inclusions were allowed to overlap with each other [36]. They considered only one

permittivity contrast between matrix and inclusion material and did not find a model

that predicted the simulated results over all volume fractions [36].

For a TEM wave, the electric field, magnetic field, and direction of propagation are

all orthogonal to each other. An example of the axis definitions for a TEM environment

is given in Figure 2.1. In Figure 2.1, the electric field is polarized in the y direction, the

magnetic field is polarized in the z direction, and propagation is in the x direction.

In another paper, Kärkkäinen, Sihvola, and Nikoskinen [37] studied three-dimensional

14



Electric �eld

Propagation directionMagnetic �eld

y

x

z

Figure 2.1: Axis definitions for a TEM wave.

mixtures of spheres and found different results for effective permittivity based on whether

or not the spheres were allowed to form clusters. A mixing model was developed to fit

the simulated results based on least squares fitting [37].

Wu, Chen, and Liu [38] observed differences in effective permittivity with spherical

inclusions compared to inclusions shaped like a cube. Wu et al. [39] also studied spheri-

cal inclusions in three dimensions. The authors found good agreement with conventional

mixing theories when there was low contrast between the sphere and surrounding mate-

rial.

Luo, Liu, and Pan [40] analyzed three-dimensional mixtures with spherical inclusions

as well as spherical inclusions with an outer membrane. The authors studied how features

such as the membrane thickness had a strong impact on effective permittivity and found

differences with different inclusion shapes including cubes and cylinders [40]. Wu et al.
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[41] studied differences in effective permittivity with different spacial arrangements of

spherical inclusions as well as a cylindrical inclusion.

Cheng et al. [42] analyzed three-dimensional mixtures where cubes of two different

permittivities were organized in a random arrangement to create a larger cube-shaped

mixture. Since the larger created structure was anisotropic in three dimensions, its effec-

tive permittivity was dependent on orientation [42]. Chen et al. [43] created a structure

of cube cells, each cell with a sphere inside. The sphere was then given a randomly vary-

ing radius to represent different sized inclusions within the entire mixture [43]. Finally,

Jylhä and Sihvola [44] studied three-dimensional mixtures of equal-sized spheres. The

spheres were allowed to exist in random positions within the mixture [44]. The authors

used a scalar fitting parameter to match their simulated results and compared the sim-

ulated effective permittivity to conventional mixing theories [44]. In [42], [43], and [44],

the authors used an averaging of the effective permittivity determined in each of three

orthogonal directions to obtain a single effective permittivity value.

2.4.3 Energy Localization Research

In addition to effective permittivity, prior research has also investigated EM field localiza-

tion behavior. Mejdoubi and Brosseau analyzed regular polygon [45] and fractal shaped

[45], [46] inclusions in two dimensions using FDTD modeling. Specifically studying an

inclusion with a fractal shape, the authors found electric field hotspots at the inclusion

corners [45]. The authors noted that these hotspots showed a lack of uniformity in field

distributions that would impact effective permittivity [45]. In addition, EMA methods

based on uniform field distrubitions (as discussed in Section 2.3.3) do not consider these

hotspots and so are limited in their ability to describe the EM properties of composites
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[46].

Using the FE method, Mejdoubi and Brosseau [47] analyzed electric field localization

on fractal shaped inclusions. These hotspots were found on the inclusion corners and

edges, showing that the fields were not uniform throughout the composite [47]. Also

using the FE method, Cheng et al. [42] studied three-dimensional arragements of cube

inclusions. Each cube inclusion within a 10 × 10 × 10 arrangement was randomly allowed

to have one of two permittivity values, creating a nonuniform structure [42]. The authors

found electric field hotspots at various locations within the stucture [42].

Electric field localization can be studied in either the time- or frequency-domains.

In this dissertation the time-domain FIT is specifically chosen because it allows field

localization behavior to be studied as a function of time. Probes can be placed within

the structure at the specific locations of hotspots and the electric fields at those points

can be measured throughout the simulation. The result is a record of varying field be-

havior in time that cannot be seen with steady-state frequency domain analyses. In this

dissertation, field probes will allow localization behavior to be studied for increasingly

complicated arrangements of inclusions to show how energy localizes in complex mixtures.

2.4.4 Summary

Previous researchers have analyzed effective permittivity and energy localization in com-

posite mixtures. This research used symmetric and regularly shaped inclusions, and ex-

panding this research to inclusions of an irregular shape is an important component of the

following chapters. Realistic composites such as those containing energetic materials are

often not made up of inclusions that are symmetric and uniform in shape. The differences

in effective permittivity with irregularly shaped inclusions presents a scenario with more
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realistic structures than those created only with spheres. In addition, the limitations of

the classical mixing theories can be further understood by increasing the irregularity in

inclusion shape.

2.5 Summary

This chapter reviewed research efforts related to effective permittivity and energy local-

ization, which are continued with the following chapters. Effective permittivity and energy

localization describe the behavior of EM energy within a medium. With an increase in

the complexity of the component mixtures analyzed, the study of effective permittivity

and EM localization behavior will bring a greater understanding of EM energy propagat-

ing within more complex component mixtures. The next chapter, Chapter 3, describes

studies of mixtures with single irregular inclusions, and for comparison purposes, ordered

cube inclusions on a grid. The complexity of the analyzed mixtures is increased in Chap-

ter 4 with the introduction of composites containing many disordered irregular and cube

inclusions.
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Chapter 3

Electromagnetic Properties of

Mixtures with Single and Regularly

Ordered Inclusions

3.1 Introduction

This chapter explores the effective temporal surface-illuminated properties of two-comp-

onent composites consisting of inclusions of regularly- and irregularly-shaped crystals

in a matrix. Time-domain EM modeling using the FIT is used to calculate scattering

(S-) parameters, and from these the effective relative permittivities are calculated. It

is shown that the orientation of inclusions with high permittivity contrast affects the

effective electrical permittivity of a composite mixture. For both low and high contrast

inclusions, fields localize at edges and corners of the irregular inclusion in a manner not

dependent on boundary conditions used in simulation.

The detection and neutralization of energetic materials using stand-off techniques is
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of significant and growing importance [1]–[5]. Most solid energetic materials are random

mixtures comprising irregularly-shaped explosive crystals embedded in a passive com-

posite or binder. In part, the energetic material can be characterized by its steady-state

bulk electrical permittivity. However, with standoff EM probing, the probe will interact

with the surface and near-surface structure of the energetic material rather than the ma-

terial bulk. Also the probe will be transient with the EM waveform appearing as a radio

frequency (RF) pulse as the probe scans the energetic material. This chapter explores

the electrical properties and energy localization of irregular materials excited by a tem-

poral EM pulse. The electrical properties determined are compared with the standard

mixing theories based on extreme mixing situations and using steady-state considera-

tions alone. Time-domain monitors are also used to analyze the near-maximum temporal

energy distributions for these irregular crystals.

Synthetic composites comprising irregularly-shaped crystals in a matrix are examined

here with a view to characterizing their effective EM properties and so establish a base-

line for remote detection and material characterization. In the past, studies of effective

medium properties have used time- and frequency-domain EM simulation methods with

various abstractions and simplifications made to render the simulation computationally

tractable. The most common simplification is to consider regularly-shaped inclusions and

sometimes a 2-D projected structure is analyzed. In the time domain, the effective per-

mittivity has been calculated in 2-D for random mixtures using FDTD simulation [36]

(where inclusions are disks), [45] (disks, regular polygons and fractals), and 3-D random

mixtures using FDTD [38] (spheres, crosses and regular polyhedrons), and [39] (spheres

and a complex yet symmetric structure). With time-domain EM analysis, regular shapes,

such as cubes, spheres, and regular polygons have been studied because these enabled

simplified gridding using rectangular meshing (and analytic projections onto a rectangu-
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lar mesh in the case of spheres).

Frequency-domain EM analysis of 2-D random mixtures of regularly-shaped inclusions

has been studied using the finite element method [47] (polygons and fractals); 3-D random

mixtures of regularly-shaped inclusions using a frequency-domain finite difference method

[37] (spheres), [40] (spheres, crosses, cylinders, and polyhedrons), and [41] (spheres and

cylinders); and 3-D random mixtures using a frequency-domain finite element method

[42] (polyhedrons), and [43], [44] (spheres). Such steady-state analyses are limited as they,

for example, do not capture temporal localization of energy.

In remote probing, a region is scanned and a steady-state is not necessarily obtained

as the applied signal is effectively a radio frequency (RF) pulse. The significant internal

reflections of a crystal-based composite illuminated by an RF pulse result in what is

referred to as a long-tail response. This characteristic is similar to that observed with RF

bandpass filters where multiple internal reflections in response to an RF pulse cannot be

predicted from steady-state observations [48].

A composite of two materials will typically be anisotropic due to the formation, fab-

rication, or manufacturing process favoring particular crystal orientations. When the

crystals are much smaller than a wavelength, in which case anisotropy results from the

combination of shapes, the standard characterization procedure is to determine an ef-

fective permittivity of the mixture by averaging the extracted effective permittivities of

each of three orthogonal directions [42], [43], [44].

This chapter studies two materials comprising crystals in a lossless matrix. The first

is an explosive material consisting of HMX crystals [9] and the other is a material with

crystals having a higher relative permittivity. For the high permittivity material, both

regular and irregular shapes are studied. For both materials, realistic crystal shapes (as

opposed to spheres, cubes, etc.) are considered. As such, the inclusions do not necessar-
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ily have symmetric shapes. Effective properties are extracted for the composites using

forward and reverse propagation, and for various crystal orientations. The overall goals

of this research are to determine under what situations irregularly shaped inclusions be-

have similarly to spheres (through comparison with the classical mixing rules based on

spheres) and cubes in calculations of effective permittivity, and to analyze how rotation

of the inclusion influences the effective permittivity of composites. EM modeling of mix-

tures with irregularly shaped inclusions is computationally intensive and knowing when

simpler geometries can be used is advantageous.

3.2 Three-Dimensional Mixing Rules

Several conventional mixing theories exist that predict the effective properties of two-

component mixtures. One of these is the Maxwell Garnett mixing theory, which provides

the effective permittivity of a composite as [21]

εeff = ε2 + 3qε2
ε1 − ε2

ε1 + 2ε2 − q(ε1 − ε2)
. (3.1)

Here ε1 is the permittivity of spherical inclusions, ε2 is the permittivity of the surrounding

material, and q is the volume fraction, i.e. filling factor, of the inclusions. The inclusion

size here is much smaller than the EM wavelength. A few assumptions of the Maxwell

Garnett mixing theory are that the inclusions are spherical in shape, the spheres do not

touch each other, and the radius of an individual spherical inclusion is much smaller than

the distances between the spheres [42]. That is, the mixing rule can only be properly used

with composites that have a low proportion of inclusions whereas the crystals in energetic

materials can have a volume fraction of up to 95%.
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The second classical mixing theory is known as the Bruggeman rule [22]

(1− q) ε2 − εeff

ε2 + 2εeff

+ q
ε1 − εeff

ε1 + 2εeff

= 0. (3.2)

As with the Maxwell Garnett mixing theory, the Bruggeman mixing rule is derived with

the assumption of widely separated spherical inclusions. More complicated structures,

such as irregularly-shaped crystals, are expected to provide different results [42].

As described in [57], an important assumption of the Bruggeman rule is that there is no

separation between the matrix material and the inclusions. Rather, the mixture is treated

as a homogenized medium over which polarizations are evaluated. Thus the Bruggeman

rule treats the inclusions and surrounding material as being symmetric. The Bruggeman

rule, Equation 3.2, balances the components in relation to the effective medium, weighting

each component by q for inclusions and 1−q for the surroundings. Conversely, the Maxwell

Garnett theory does not utilize such symmetry.

Mixing rules developed for composites are based on the two classical mixing rules

(Maxwell Garnett and Bruggeman) but none cover all types of inclusions [42]. In this

chapter the applicability and limitations of the classic Maxwell Garnett and Bruggeman

rules are further developed.

3.3 Simulation Method and Technique

The effective permittivity of a sample of finite thickness can be determined using mea-

sured or simulated scattering (S-) parameters as described in [49], [50], [51], [52]. The

time-domain FIT solver with hexahedral meshing implemented in the commercial EM

package CST Microwave Studio is utilized for these simulations. This package allows
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complex 3D shapes to be modeled and simulated. FIT is equivalent computationally to

FDTD except that the time-domain Maxwell’s Equations are discretized in integral form

rather than differential form [52] and gridding is generalized.

The adaptive meshing algorithm used refines the mesh until convergence of electrical

characterization is obtained. Refinement of the time-domain mesh by an additional step

led to an effective permittivity change of less than 0.5% (indicating that acceptable

accuracy had been reached). The number of mesh cells for each time-domain simulation

run was at least 250,000. Computation was performed using an 80 core cluster with

160 GB of RAM and clocking at 2.66 GHz. Where required, time results were Fourier

transformed to yield a frequency-domain characterization from an applied wideband EM

pulse.

With the RF component having angular frequency ω, the free space wavenumber

k = ω/c where c is the speed of light. With excitation at Port 1 (the incidence port), the

wavenumber, the thickness d of the structure in the direction of propagation, and the

calculated S-parameters were used to derive the refractive index n of a sample surrounded

by vacuum using [51], [52]

n = ±
{

1

kd
arccos

[
1

2S21

(1− S2
11 + S2

21)

]
+

2πm

kd

}
, (3.3)

where m is an integer indicating multiple possible solutions. In Equation 3.3, n is negative

if the permittivity and permeability are both negative. The relative wave impedance z

of the sample is [51], [52]

z = ±

√
(1 + S11)2 − S2

21

(1− S11)2 − S2
21

. (3.4)

The S-parameters in Equation 3.3 and Equation 3.4 are referenced to the impedance of
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free space, η. Information about the material can be used to remove the ambiguities in

Equation 3.3 and Equation 3.4. When d is large compared to the wavelength λ in the

medium, the branches of the arccosine function determined by m in Equation 3.3 can be

close together. This can make finding a unique solution for n difficult. However, in the

following simulations d is less than λ/4 so that there is a unique result for n. As a result,

the default branch of m = 0 and positive n is chosen in Equation 3.3. A passive material

means that <(z) is positive, so that the positive branch is chosen for Equation 3.4. Now,

with unique solutions for n and z, the effective permittivity is [51], [52]

εeff =
n

z
. (3.5)

Here n can be well defined by a material that supports one propagating mode at

a certain frequency [51], which is true here. For the frequency range studied of up to

50 GHz, there is only one propagating mode, TEM, all other modes are evanescent, and

Equations 3.3 and 3.4 use the transmission and reflection coefficients for the mode that

is propagating. Thus, the bulk effective permittivity relies on an abstraction to utilize

the single propagating mode rather than on evanescent modes in its derivation. The

results that follow for the effective permittivities of mixtures use the procedure above to

determine εeff unambiguously.

3.4 Modeling of Irregular Crystals

Several different types of irregular inclusions are analyzed here in the following subsec-

tions.

25



3.4.1 Modeling of Irregular Crystals in CST

An important goal of this research is modeling inclusions of a size and shape represen-

tative of materials comprising irregularly-shaped crystal inclusions. For reference, the

crystal size of the irregular energetic material HMX is typically 0.15 mm [9]. This was

modeled in CST as the irregularly-shaped crystal shown in Figure 3.1. This becomes an

inclusion in a matrix modeled here as having a relative permittivity of 1. In Figure 3.1,

the irregular crystal spans 0.15 mm in the z direction with a maximum dimension of

0.178 mm and 0.192 mm in the x and y directions, respectively. The total volume of the

irregular crystal is 0.00351 mm3. The outer box shown is a cube with a side length of

0.26 mm, giving an inclusion volume fraction of q = 0.20 for Figure 3.1. For propagation

in free space, a unit cell side length of 0.26 mm corresponds to approximately 0.00087λ

(λ is the wavelength measured in mm) at the studied frequency of 1 GHz. The size of

the irregular crystal is kept constant and the outer box side length is changed to obtain

the various volume fractions.

EM propagation through the material is modeled using CST Microwave Studio with

the crystal placed in a parallel plate transverse EM (TEM) environment [45]. With the

electric field polarized in the x direction, the TEM environment is established by setting

the opposite pair of normal faces in the x direction as electric walls, the opposite pair of

normal faces in the y direction as magnetic walls, and the final opposite pair of normal

faces in the z direction using open boundary conditions. In simulation the open faces

are modeled as perfectly matched layers (PMLs) that eliminate reflections back into the

TEM environment. Measurement ports are set up at the open faces (Port 1 and Port 2),

defining the axis of EM propagation in the z direction, see Figure 3.2.

In Figure 3.2, the ports are separated from the mixture, providing an averaging effect
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Figure 3.1: An irregularly-shaped inclusion inside an outer box. The inclusion volume
fraction here is 20%. The crystal is within a cube with a side length of 0.26 mm. For
comparison, with εr = 28, the wavelength at 50 GHz is 1.13 mm.
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1

2

Figure 3.2: The irregular crystal of Figure 3.1 shown with waveguide ports (Port 1 and
Port 2) set along the propagation axis, the z axis. In turn the x and y propagation
directions were also considered with the crystal structure fixed in position and boundary
conditions changed appropriately.
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similar to what happens with stand-off remote sensing. Specifically, the spacing from the

waveguide ports to the structure is λ/4 of the maximum frequency component (50 GHz)

of the applied RF pulse. Propagation in free space results in a separation distance of 1.5

mm for both ports in Figure 3.2. Measurements at the ports shown in Figure 3.2 were

referred to reference planes on the surface of the cube also shown in Figure 3.2. This

yielded the S-parameters used with Equation 3.3 and Equation 3.4 to determine the

effective permittivity of the mixture calculated using a Gaussian pulse excitation signal,

Fourier analyzed temporal response, and Equation 3.5.

One of the issues in EM modeling is that the size of the structure that can be simulated

is limited and it is necessary to establish simulation boundaries close to the structure

being investigated. Thus the possible impact that the boundary conditions have on the

extracted results is a concern. The TEM waveguide environment is necessary to extract

the effective permittivity and the environment (i.e., the TEM set of boundary conditions)

emulates a large structure that mirrors cells [44] as shown in two dimensions in Figure 3.3.

Other periodic boundary conditions emulate structures with other arrangements of re-

peating cells. In the following it is shown that the boundary conditions chosen have

negligible effect on energy localization and, by extrapolation, on effective permittivity.

3.4.2 Energy Localization

EM remote probing of compounds presents the material with an RF pulse resulting

in time-localized energy concentrations rather than steady-state energy concentrations.

Temporal localization of energy is explored in this section using the Gaussian pulse

shown in Figure 3.4 (with an appreciable frequency content from 0 to 50 GHz) and the

irregularly-shaped crystal shown in Figure 3.1. An irregularly-shaped crystal of HMX
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Figure 3.3: Cross section of the larger emulated structure based on a unit cell shown
in Figure 3.1. The electric and magnetic boundary conditions of the TEM environment
create electric and magnetic mirror boundaries, extended here for the 25 inner most cells.
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Figure 3.4: Gaussian pulse excitation signal used in simulation.

(having low real relative permittivity of 2.03 [53], [54]) in a binder having a relative

permittivity of 1, and in the TEM environment has the (near-maximum) temporal energy

distribution shown in Figure 3.5. That is, this is the EM energy distribution close to the

point in the mixture that has the highest electrical energy concentration at any position

and time.

It is seen that the electric energy density localizes around the edges and corners of the

crystal as expected [45]. These corners and edges are specifically the ones closest to the

outer box, i.e. the adjacent crystal for the emulated structure, in the polarization axis

of the applied electric field (the x axis here). Before considering alternative boundary

conditions, consider energy localization for a high permittivity material. For a zirconia-

like high permittivity inclusion (with real relative permittivity of 28 [55]) the resulting
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Figure 3.5: Peak electric energy density at t = 40 ps for the HMX-based composite
(calculated as J/m3 and here normalized to a maximum of 1) with highest density at the
edges and corners indicated by the black oval. Calculated using the TEM environment
with the applied electric field polarized in the x direction and propagating in the positive
z direction.

32



Figure 3.6: Peak electric energy density for the zirconia-like high permittivity inclu-
sion normalized to the energy density in Figure 3.5. Conditions correspond to those in
Figure 3.5.

electric energy density in the composite is given in Figure 3.6. The simulation conditions

are the same as for Figure 3.5. Again the electric energy density localizes at the same

corners and edges of the inclusion. Now, the peak electric energy density is approximately

8 times greater than with the composite with the HMX (low permittivity) inclusion.

To investigate the effect of the specific boundary conditions on energy localization,

simulations were repeated with periodic boundary conditions at the y-z and x-z planes

on the boundaries. This creates a repeating non-mirrored periodic structure in the x

and y directions. With these boundary conditions it is also necessary to change the
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Figure 3.7: Normalized peak electric energy density for the HMX (low permittivity)
inclusion with highest density at the edges and corners indicated by the black oval. Plane
wave excitation and periodic boundaries are utilized. The electric field is polarized in the
x direction with propagation in the positive z direction.

source excitation from a waveguide port to a plane wave. The plane wave is linearly

polarized, propagating along the z axis with electric field polarized in the x direction.

The peak electric energy densities for the low- and high-permittivity inclusions are shown

in Figure 3.7 and Figure 3.8 respectively. In Figure 3.7 and Figure 3.8, the periodic

boundary conditions result in localization of electric energy density at the corners and

edges of the inclusion and the relative energy distribution is approximately identical to

that obtained when the mirrored boundaries were used in simulation as in Figure 3.5 and

Figure 3.6.
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Figure 3.8: Electric energy density for the high permittivity inclusion normalized to the
energy density in Figure 3.7 with the same simulation conditions as in Figure 3.7.
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Comparing the energy densities in Figure 3.5 and Figure 3.7, and in Figure 3.6 and

Figure 3.8, and comparing the scales in Figure 3.6 and Figure 3.8 enables the impor-

tant conclusion to be reached that the simulation conditions have little effect on energy

density. Figure 3.6 and Figure 3.8 show the energy density when the high permittivity

inclusion is used with the simulation reported in Figure 3.6 using mirror boundaries and

Figure 3.8 using periodic boundaries. The peak energy density differs by less than 5%.

Thus the results in Figure 3.5 to Figure 3.8 show that there is no significant dependence

of electric energy localization on simulation boundary conditions. This conclusion was

reinforced by simulations with the crystal rotated and energy density again found to have

little dependence on boundary conditions. With these results, the effective permittivity

of the compounds can be explored without being concerned with the impact of boundary

condition choice. Specifically TEM conditions are used, which enables the effective per-

mittivity to be extracted using scattering parameters that can be conveniently extracted

using the TEM environment.

3.4.3 Effective Permittivity with HMX Inclusions

HMX has been measured to have a relative electrical permittivity from 1 to 6 GHz of

εr = 2.03 − 0.0035 and this is expected to be constant up to 20 GHz [53], [54]. The

flat permittivity indicates that the loss mechanism is due to dielectric relaxation and

that, at least between 1 and 6 GHz, there is negligible loss due to material conductivity.

The real component of the effective relative permittivity, <(εeff), at 1 GHz derived from

EM simulations for the HMX-based compound versus filling factor is compared to that

calculated using the conventional mixing theories in Figure 3.9.

For the results in Figure 3.9 derived from EM simulations, a total of 6 propagation
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Figure 3.9: Plots of the real component of the effective relative permittivity versus vol-
ume fraction, i.e. filling factor q, for a compound with irregular HMX crystal inclusions.
The squares identify the effective permittivities calculated (using EM simulated results)
as the equally weighted average of the effective permittivities extracted for each of the
three positive orthogonal propagation directions. The plus signs identify the effective
permittivities calculated similarly but now considering both positive and negative propa-
gation directions. Also shown are the effective permittivities calculated using the Maxwell
Garnett and Bruggeman mixing theories.
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directions were considered in turn. Both the forward and reverse propagation directions

along each of the 3 coordinate axes (x, y, and z), each corresponding to a unique polar-

ization of electric field, E, are used to gather six independent results for effective per-

mittivity according to Equation 3.3 through Equation 3.5. Figure 3.9 compares <(εeff)

taken as the arithmetic average of either just the positive propagation directions, or of

all six directions. In Figure 3.9, the forward and reverse propagation directions for a

given polarization yield the same effective permittivity within 1% and the two averaging

schemes yield results within 1%. Thus, while individual permittivity values differ among

x, y, and z polarizations, effective permittivity is independent of propagation direction

for the same electric field polarization. As an additional test, the unit cell was doubled in

the direction of propagation, and the calculated effective permittivity was found to differ

from the situation of a single unit cell in the propagation direction by less than 0.05%.

At least for the low permittivity contrast material (as with the HMX compound here),

the results shown in Figure 3.9 for the simulated effective permittivity closely follow the

predictions of the Maxwell Garnett and Bruggeman mixing theories even for high filling

factors. At a 45% volume fraction, q = 0.45, the discrepancy of the four results is less

than 0.94%. The Maxwell Garnett and Bruggeman mixing theory results were based on

an assumption that the inclusions are spheres and that the spheres are not close to each

other (corresponding to low filling factors typically under 10%) [42]. That is, for a low

permittivity contrast granular material, the Maxwell Garnett and Bruggeman mixing

theories can be used with irregular inclusions and with filling factors up to 45% within

1% error.
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3.4.4 Effective Permittivity with High Permittivity Inclusions

In this section the previous results for granular materials having low permittivity inclu-

sions are compared to those for a granular material having a high permittivity contrast

between the inclusions and the matrix. The material examined has zirconia-like crystal

inclusions. The zirconia-like crystals have a relative permittivity of 28, a tan δ (ratio

of imaginary over real permittivity) of 0.0009 (measured at 1 GHz [55]), have negligible

conductivity, and have the same shapes as the HMX crystals to remove crystal shape as a

variable. Using the same simulation environment as used previously, the calculated effec-

tive electrical permittivities at 1 GHz are compared to those derived using the Maxwell

Garnett and Bruggeman mixing theories in Figure 3.10. As before the simulated effective

permittivity is independent of propagation direction. Now, however, there is a significant

difference between the effective permittivities calculated and the classic mixing theories.

The discrepancy is near 1% up to a volume fraction of 0.05 growing to 22% and 61%

differences from the Maxwell Garnett and Bruggeman mixing theories, respectively, at

a volume fraction of 0.45. This compares to less than 1% discrepancy at this volume

fraction for the lower permittivity HMX compound.

3.4.5 Summary

The Maxwell Garnett and Bruggeman mixing theories are based on spherical and regu-

larly ordered inclusions and are generally accepted as being applicable for volume frac-

tions of 0.1. The investigations here have shown that with a small permittivity contrast

between the matrix material and the inclusion (here 2.03), the Maxwell Garnett and

Bruggeman mixing theories are accurate at high filling factors and for irregular struc-

tures. However, with a high permittivity contrast between the inclusion and the matrix
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Figure 3.10: Plots of the real component of the effective relative permittivity (derived
from EM simulation results) versus filling factor for an irregular high permittivity inclu-
sion crystal. The squares indicate the equally weighted average of the effective permittiv-
ities calculated for each of the three positive orthogonal propagation directions. The plus
signs indicate the equally weighted average effective permittivities of the positive and
negative propagation directions (6 total). The circles indicate the results from using the
Frequency Domain Solver. Also shown are the effective permittivities calculated using
the Maxwell Garnett and Bruggeman mixing theories.
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there is a significant departure between the predictions of the conventional mixing the-

ories and the simulated effective electrical permittivity of granular compounds. From

Figure 3.10 it is also evident that for irregularly-shaped inclusions, high permittivity

contrast between inclusion and matrix material produces significantly different results

from conventional mixing theories at filling factors above 0.05. Thus for high filling fac-

tors as seen in Figure 3.10, the traditional mixing theories do not accurately predict the

effective properties of irregularly shaped mixtures when the permittivity contrast of the

inclusion and of the matrix is high. This observation is compatible with previously re-

ported research results for high permittivity contrast when the inclusions have a regular

shape [42], [44].

3.5 Modeling of Multiple Crystals

This section continues the investigation of compounds with a high permittivity contrast

scenario but now using multiple cube crystal inclusions in an ordered arrangement in

order to study the properties of a large volume with multiple inclusions but now with

a regular shape. The use of a regular shape simplified the gridding used in simulation

and resulted in a simulation model that fit in the available 160 GB of RAM. An example

of such a structure is shown in Figure 3.11. In Figure 3.11, each cube is 0.056 mm on

a side and the side length of the outer box is 1.37 mm so that the volume fraction is

5%. For propagation in free space at 1 GHz, a unit cell size of 1.37 mm corresponds to

approximately 0.0046λ (λ is the wavelength measured in mm). Also shown in Figure 3.11

are Ports 1 and 2, the waveguide simulation ports. The side length of each cube inclusion

varies with volume fraction and increases to approximately 0.15 mm for a 0.95 volume

fraction. The inclusions are the high permittivity material and the matrix has a relative
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Figure 3.11: A total of 729 cube crystals (inclusions) arranged on a grid within a free
space outer block. The volume fraction of inclusions here is 5%.

permittivity of 1. Results of the simulated effective permittivity versus volume fraction

are given at 1 GHz in Figure 3.12.

In Figure 3.12, the effective permittivity derived from simulations closely matches the

predictions of the Maxwell Garnett mixing theory for all volume fractions. Comparing

Figure 3.12 with Figure 3.10, with the same high permittivity contrast, irregular inclu-

sion shapes exhibit greater effective permittivity differences from established theory (see

Figure 3.10) than when symmetric and ordered inclusion crystals on a grid are considered

(see Figure 3.12). It is also possible that the larger structure, as with the Figure 3.12

results, provides a greater averaging effect than the thin layer of crystals considered with
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Figure 3.12: Plots of real effective relative permittivity, <(εeff), versus various filling
factors for high permittivity cube inclusion crystals on a grid along with various bounds.

Figure 3.10. This is examined further by considering properties of a crystal while it is

rotated.

3.6 Rotated Crystals

This section considers the electrical characteristics of crystals that are both regularly-

shaped and irregularly-shaped when the crystals are rotated, with permittivity results

taken at 1 GHz. Effective permittivity is calculated as the inclusion crystals are rotated,

and this behavior is compared with plots of cross-sectional area. The zirconia-like crys-

tals having high permittivity contrast are considered since these were found to have the

greatest deviation from established theory previously. However, the crystal is now rotated
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around each of the coordinate axes (x, y, and z) to investigate the influence of crystal

orientation on the determination of effective relative permittivity. These are particularly

interesting effects as they form the basis of a sensing modality with the source of illumi-

nation moving rather than rotation of the crystal inclusions. Note that the manufacture

of many compound objects results in aligned crystals.

3.6.1 Cube-shaped Rotated High Permittivity Inclusions

The analysis begins with a simple rotation scenario, a high permittivity cube crystal

inclusion with a volume fraction of 0.10, see Figure 3.13. In Figure 3.13, the inner cube has

a side length of 0.195 mm and the outer box has a side length of 0.420 mm. At 1 GHz a unit

cell size of 0.420 mm corresponds to approximately 0.0014λ (λ is the wavelength measured

in mm) for propagation in free space. The effect of rotation on effective permittivity

with the electric field polarized in the x direction is shown in Figure 3.14. Figure 3.14

indicates that when the inclusion rotates around the x axis (the direction of electric

field polarization), there is negligible change in <(εeff) of the mixture. However, <(εeff)

does vary with rotation of the crystal around the y and z axes. Many possible sources

of this rotational dependency were found with the strongest correlation being with the

projection of the immediate cross-sectional area of the crystals on the plane transverse

to the direction of polarization. Thus a plot of cross-sectional area fraction is shown in

Figure 3.15. The cross-sectional area fraction with respect to a given axis is the ratio

of the cross-sectional area of the inclusions projected in the plane normal to the axis

to the area of the projection of the inclusions plus surrounding material in that plane.

This ratio is calculated for the first crystal layer, which is the layer that interacts most

strongly with an illuminating field. This ratio is shown in Figure 3.15 with respect to the
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Figure 3.13: Cube-shaped high permittivity inclusion crystal at 10% volume fraction in
the TEM simulation environment.

x axis, here the electric field polarization.

By comparing Figure 3.14 with Figure 3.15, it is evident that overall the effective

permittivity of the mixture with rotated cube-shaped inclusion follows the behavior of

the cross-sectional area fraction graph when rotated about the corresponding axis. If the

cross-sectional area fraction is constant (as is the case for the x axis rotation here), the

effective permittivity is also approximately constant. However, from 40◦ to 50◦ rotation

around the y and z axes, the cross-sectional area fraction continues to increase but the

effective permittivity goes down. Outside this narrow range of angles there is a high

correlation of the cross-sectional area and effective permittivity.

Next, another cube-shaped high permittivity inclusion is used but this time at 20%

filling factor to see how the effective permittivity versus rotation angle is altered when
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Figure 3.14: The real effective relative permittivity, <(εeff), of a high permittivity cube-
shaped inclusion at a filling factor of 0.10 versus rotation angle around the x, y, and z
axes. Here, the electric field is polarized in the x direction.
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Figure 3.15: Cross-sectional area fraction from the perspective of the x axis for a 10%
filling factor. For other filling factors the curves are directly scaled.
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Figure 3.16: The real effective relative permittivity, <(εeff), of a high permittivity cube-
shaped inclusion at 20% volume fraction versus rotation angles around the x, y, and z
axes. The electric field is polarized in the x direction.

the filling factor is increased. The results for effective permittivity from these simulations

are given in Figure 3.16. The same behavior seen with lower filling factor is observed but

now exaggerated.

For the most part, effective permittivity follows the behavior of the cross-sectional

area fraction. Now however, there is a wider region over which the cross-sectional area

fraction increases but the effective permittivity goes down. In Figure 3.16 this dip is

shown to be from 35◦ to 55◦ rotation compared to 40◦ to 50◦ rotation for the 10%

volume fraction simulations in Figure 3.14. For both 10% and 20% volume fraction, as

the crystal begins to rotate (y and z axis rotation here) the cross-sectional area fraction

goes up. The volume fraction is constant but because the cross-sectional area fraction is
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going up more of the crystal is seen by the electric field and the effective permittivity

goes up. However, an inverse relationship develops between cross-sectional area fraction

and effective permittivity centered around 45◦. Since the inner crystal is rotating, at

45◦ rotation it is closest to the nearest crystal. The crystals getting close to each other

causes another phenomenon to take over where an inverse relationship develops between

cross-sectional area fraction and effective permittivity.

The range over which the dips in Figure 3.14 and Figure 3.16 occur can be understood

by comparing the structures in these two situations. In the 20% volume fraction scenario

in Figure 3.16, the inner crystal is taking up more space inside the outer box compared

to the 10% volume fraction case in Figure 3.14. In Figure 3.16 the region of the dip has a

larger 20◦ range for the 20% volume fraction scenario because (starting with 0◦ rotation

as shown in Figure 3.13) it takes less rotation for the crystal to get close to the outer

box. There is a smaller 10◦ range of the dip for the 10% volume fraction scenario in

Figure 3.14, where because the crystal is so small within the outer box it takes close to

45◦ rotation for the crystals to get close enough to each other for the inverse relationship

to develop.

In effect, for both the 10% and 20% volume fraction mixtures with cube-shaped

inclusions all of the inclusions are rotating and at 0◦ and 90◦ the crystals are at maximum

separation. At 45◦ the crystals are closest to each other, where fringe effects influence the

effective permittivity.

3.6.2 Irregular Rotated High Permittivity Inclusions

In this section, the same high permittivity material properties are used for the inclusion,

but this time an irregular structure is used instead of the cubes from the previous sec-
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Figure 3.17: The real effective relative permittivity, <(εeff), of a high permittivity
irregular-shaped inclusion at 20% filling factor versus rotation angle around the x, y,
and z axes. The electric field is polarized in the x direction.

tion. From Sections 3.4 and 3.5, the greatest deviation from established mixing theories

occurred with high permittivity irregular inclusions, and these structures are studied in

more detail here. The shape of the inclusion is shown in Figure 3.1. This allows a more

realistic and complicated structure to be rotated. For all of the following rotations the

volume fraction is kept constant at 20%. First, the electric field is polarized in the x

direction, and results of permittivity versus rotation angle are given in Figure 3.17.

In Figure 3.17, rotation around the same axis as electric field polarization shows

virtually no deviation in effective permittivity with rotation angle. However, rotation

around the other axes shows unique oscillating behaviors. In an attempt to understand

the reasons for these oscillations in permittivity, Figure 3.18 shows cross-sectional area
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Figure 3.18: Cross-sectional area fraction of the rotated irregular crystal from the per-
spective of the x axis (electric field polarization axis) as the crystal is rotated around a
given axis.

fraction looking along the x axis (the electric field polarization axis) as the irregular

crystal is rotated. By comparing Figure 3.17 with Figure 3.18, the behavior of cross-

sectional area fraction with rotation follows that of effective permittivity for rotation

around the x (electric field polarization axis) and y axes. The cross sectional area with

rotation around the z axis oscillates just as the effective permittivity does when rotated

around the z axis, but with an inverse relationship. Still, correlation between cross-

sectional area fraction and effective permittivity is evident.

Next, the electric field is polarized in the y direction and the crystal is rotated around

each axis. Results of effective permittivity are given in Figure 3.19. Again, in Figure 3.19

there is constant permittivity when the irregular inclusion is rotated around the y axis
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Figure 3.19: The real effective relative permittivity, <(εeff), of a high permittivity
irregular-shaped inclusion at 20% filling factor versus rotation angle around the x, y,
and z axes. The electric field is polarized in the y direction.

(electric field polarization axis), and oscillating behavior with rotation around the other

axes. A plot of the cross-sectional area fraction is provided when looking from the per-

spective of the y axis in Figure 3.20. A comparison of Figure 3.19 with Figure 3.20 shows a

direct correlation between cross-sectional area fraction with rotation and effective permit-

tivity for rotation around the x and y (electric field polarization) axes. Rotation around

the z axis causes cyclical variation in both figures, but with an inverse relationship.

Analyzing Figure 3.17 through Figure 3.20, it is evident that there are two situations

where the effective permittivity variation does not show a direct relationship to the cross-

sectional area fraction. These situations are rotation about the z axis for electric field

polarized in the x direction (Figure 3.17 and Figure 3.18) and rotation about the z axis
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Figure 3.20: Cross-sectional area fraction of the rotated irregular crystal from the per-
spective of the y axis (electric field polarization axis) as the crystal is rotated around a
given axis.
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for electric field polarized in the y direction (Figure 3.19 and Figure 3.20). Analyzing

Figure 3.1, it is seen that these two situations involve the same type of rotation. In

Figure 3.1, looking down the x or y axes and rotating the crystal around the z axis

causes the crystal to keep the same width (in the z direction) and rotate end over end.

In this situation entire sides of the crystals are becoming close to each other. The degree

of proximity is greater than in the other situations. For example, in rotation about the

y axis for electric field polarized in the x direction (Figure 3.17), the edges rather than

the faces of the crystals approach each other. So, just as in Figure 3.14 and Figure 3.16

where the cube crystals approaching each other resulted in an inverse relationship of the

effective permittivity with the cross-sectional area fraction, the situations of rotating the

crystal end over end in Figure 3.17 through Figure 3.20 cause enough of the crystals to

be in close proximity for an inverse relationship to develop. The simulations have shown

that close adjacency of neighboring inclusions results in an inverse relationship between

cross-sectional area fraction and effective permittivity.

Finally, the electric field is polarized in the z direction and the crystal is rotated

along each axis. The effective permittivity for this scenario is given in Figure 3.21. Just

as shown in Figure 3.17 and Figure 3.19, when the inclusion is rotated around the same

axis as the electric field polarization in Figure 3.21 (z axis) there is no change in effective

permittivity. Rotation around the x and y axes shows the same oscillating behavior. For

comparison purposes, Figure 3.22 shows cross-sectional area fraction looking down the z

axis (electric field polarization axis) as the irregular crystal is rotated.

Comparison between Figure 3.21 and Figure 3.22 shows that the cross-sectional area

fraction with rotation from the perspective of the z axis (electric field polarization axis)

shows the same behavior as effective permittivity of the rotated inclusion for all axes.

In Figure 3.21 and Figure 3.22, there is no inverse relationship with cross-sectional area
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Figure 3.21: The real effective relative permittivity, <(εeff), of a high permittivity
irregular-shaped inclusion at 20% filling factor versus rotation angle around the x, y,
and z axes. The electric field is polarized in the z direction.
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Figure 3.22: Cross-sectional area fraction of the rotated irregular crystal from the per-
spective of the z axis (electric field polarization axis) as the crystal is rotated around a
given axis.
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fraction because the situation of rotating end over end (z axis rotation) with sides of the

crystals getting close to each other does not change the cross-sectional area fraction or

the effective permittivity.

Overall, rotating the inclusion crystals provides strong evidence for a relationship be-

tween the cross-sectional area fraction of inclusions and effective permittivity of mixtures.

For both regular and irregular crystals, the effective permittivity and cross-sectional area

fraction share a direct relationship except in situations where a significant amount of the

inner crystal reaches close to the outer box, or to adjacent crystals, where an inverse

relationship develops.

Rotation of the inclusion crystals and changing the electric field polarization axis high-

lights the anisotropy of the composites studied. Effective permittivity is found to differ

based on electric field polarization direction. The results in Figure 3.9 and Figure 3.10

average together the various permittivities obtained from varying the polarization di-

rection to obtain a single effective permittivity. The sections describing rotation also

highlight anisotropy even at a constant volume fraction. We change the electric field po-

larization axis and rotate the inclusion crystal, and the significant differences observed

are highlighted in the figures.

3.6.3 Impact of Operating Frequency

The results in the preceding sections present the effective permittivity at a low frequency

(1 GHz) where the inclusions are small compared to a wavelength. To see the impact on

effective permittivity when the operating frequency varies, Figure 3.23 shows effective

permittivity for the high permittivity irregular inclusion at 20% volume fraction with

electric field polarized in the z direction (results from all rotations given in Figure 3.21)
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Figure 3.23: The real effective relative permittivity, <(εeff), of the high permittivity
irregular-shaped inclusion at 20% volume fraction (results for all rotation angles given in
Figure 3.21) for 0◦ rotation as a function of frequency.

but specifically for 0◦ rotation. Here the unit cell has side length of 0.26 mm, correspond-

ing to approximately 0.00087λ at 1 GHz and 0.043λ at 50 GHz (λ is the wavelength

measured in mm) for propagation in free space.

With a crystal size of approximately 0.15 mm, in Figure 3.23 the effective permittivity

is flat through 25 GHz before starting to increase by less than 0.5% up to 50 GHz, a neg-

ligible change from the static value. Similar results were obtained for other polarizations

and rotation amounts that also show a flat response across frequency.
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3.7 Summary

This chapter studied the effective permittivity and electric energy localization behavior of

crystal-based compounds with high and low contrast between the electrical permittivity

of inclusions and the matrix. The results addressed the appropriateness of the simulation

boundary conditions, applicability of traditional mixing rules, and characteristics that

can lead to new sensing modalities. In particular all investigations used a temporal pulse

corresponding to a remote probing scenario.

For both mirrored and periodic boundaries, electrical energy localized to the greatest

extent on the edges and corners of the inclusion crystal closest to another crystal in the

direction of electric field polarization. The energy localization varied with time indicating

the importance of not using steady-state analysis to determine peak energy density. In

particular, it is only necessary to obtain high energy concentration at one point in space

and time to activate an energetic material. The energy distribution and temporal response

were virtually independent of the boundary conditions used in simulation. It is therefore

reasonable to assume that the boundary conditions have negligible effect on the effective

permittivity of mixtures extracted from EM simulations.

The effective permittivities were extracted for both forward and reverse propagation

and for each electric field polarization (x, y, and z). Since the irregular structures are not

symmetric with respect to all polarization directions, it is not surprising that directional

dependency of the effective permittivity was observed. However, for the same electric

field polarization the effective permittivity did not depend on forward or backward prop-

agation direction.

The classical mixing rules for spherical inclusions, Maxwell Garnett and Bruggeman,

were compared to the effective permittivities extracted from EM simulations. With low
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permittivity contrast between inclusion and matrix material (here 2.03), there was little

dependence on inclusion shape for effective permittivity up to a volume fraction of 0.45

(typically the highest volume fractions of energetic materials not of military grade). For

high permittivity contrast (here 28), the effective permittivity derived was significantly

different from the prediction of the classic mixing theories. For ordered cube inclusions on

a grid, the behavior of the effective permittivity derived from EM simulations was similar

to that of the Maxwell Garnett theory for all volume fractions (up to 0.45), while neither

Maxwell Garnett nor Bruggeman were able to correctly predict the effective permittivity

of mixtures with inclusions having irregular shapes for volume fractions above 0.05.

One of the purposes of the study was to explore new sensing modalities, that is phys-

ical behaviors that could be observed remotely with the focus here being the dependence

of effective permittivity on observation direction. The effect of a moving probe was emu-

lated by rotating the crystal in the compound. When the inclusions were rotated, there

was a variation in effective permittivity of the mixture leading to anisotropy even at a

constant volume fraction. Thus, the effective permittivity of a mixture varies as the angle

of observation changes. As the crystal inclusions were rotated (corresponding to a varia-

tion in the angle of observation for a mixture fixed in position), the effective permittivity

for a given electric field polarization axis was highly correlated to the fractional cross-

sectional area of the first crystal layer from the perspective of the axis of polarization.

It is this first crystal layer that most strongly interacts with an applied EM pulse. An

inverse relationship between effective permittivity and cross-sectional area fraction was

observed. Note that manufactured energetic materials will typically have aligned crystals.

That is, there is a dependency of the observed effective permittivity on the polarization

and on the angle of observation. This dependency is not accounted for in the classic

Maxwell Garnett and Bruggeman mixing theories and deserves further investigation.
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The next chapter continues the study of effective permittivity of composites and en-

ergy localization, but increases the complexity of the mixtures that are analyzed. Specifi-

cally, this includes mixtures with hundreds of disordered inclusions both of irregular and

cube shapes.
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Chapter 4

Electromagnetic Properties of

Mixtures with Many Disordered

Inclusions

4.1 Introduction

The previous chapter analyzed EM properties in relatively simple scenarios (single in-

clusions and ordered inclusions on a grid). To analyze more complex structures with

greater disorder, this chapter studies the EM properties of two-component mixtures in-

volving many disordered regularly and irregularly shaped crystals. The effective relative

permittivities are calculated utilizing the time-domain Finite Integration Technique. The

effective permittivity of disordered mixtures deviates from established mixing theories

especially in cases of high permittivity contrast between inclusions and matrix material,

and is strongly correlated to the cross-sectional area of the inclusion crystals. Electric

energy density localizes at the edges and corners of inclusions in a manner independent of
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inclusion shape and influenced by EM propagation direction and surrounding inclusions.

For mixtures with both disordered irregular and more organized cube inclusions, energy

localization increases as the EM signal travels through the mixture before decreasing

due to attenuation of the propagating EM signal. With a large number of inclusion crys-

tals (here in the hundreds) it is found that the impact on effective permittivity from

differences in individual inclusion shapes is negligible.

Natural and manufactured composites comprise two or more components, and while

the electrical properties of the individual components may be well known, the electrical

properties of a composite are generally thought to be dependent on the shape, orienta-

tion, surface structure, and distribution of components. An understanding of the electrical

properties of component mixtures, including energy localization, is important in nonde-

structive testing, predicting the response of rocket fuel and explosives to EM insult,

remote sensing, and in industrial heating and curing.

The EM behavior of such a non-magnetic complex object is largely described by its

effective permittivity. Studies of effective medium properties have used various simulation

methods. The effective permittivity of a mixture has been calculated using finite difference

time-domain EM simulation in two dimensions [36], [45] and three dimensions [38], [39],

in two dimensions using frequency-domain finite element EM analysis [47], and in three

dimensions using the frequency-domain finite difference [37], [40], [41] and finite element

[42], [43], [44] methods. The random combination of variously shaped inclusions with a

permittivity contrast to the embedding matrix can result in macroscopic anisotropy. The

standard electrical characterization procedure is then to average the effective permittivity

calculated in each of three orthogonal directions to obtain an overall effective permittivity

of the mixture [42], [43], [44], [56].

Earlier studies considered a single type of inclusion in a matrix material with permit-
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tivity contrasts between inclusion and matrix of up to 10 to 1 [38], [45]. These studies

were limited to a few inclusions because of computational complexity, and found that

the effective permittivity depended on the shape of the inclusion. The previous chapter

studied the effective permittivities of mixtures modeled with a single irregular crystal

shape using the FIT and found deviation from established mixing theories that was espe-

cially significant with high permittivity contrast between inclusion and matrix material.

This chapter models mixtures with hundreds of irregularly and regularly shaped inclu-

sions in a disordered arrangement. The effective permittivity results are compared to the

predictions of classical mixing rules and to each other. It is shown here that with many

inclusions (in the hundreds), even when there is relatively high permittivity contast be-

tween inclusion and matrix material of up to 28 to 1, the impact of inclusion shape on

effective permittivity is negligible. In addition, mixtures with many irregular and regular

crystals are studied to provide insight into how the combination of individual crystals

within a larger mixture impacts EM energy localization and the creation of hotspots.

Again it is seen that inclusion shape has little effect on energy localization behavior.

This chapter provides a basis for understanding how pulsed microwave signals can be

used to characterize materials and for understanding how pulsed microwave signals can

create hotspots in materials either intentionally or inadvertently. For this reason, EM

analysis is performed in the time domain.
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4.2 Classical Mixing Rules

The classical Maxwell Garnett mixing theory gives the effective permittivity, εeff , of a

two-component three-dimensional mixture with spherical inclusions as [21]

εeff = ε2 + 3qε2
ε1 − ε2

ε1 + 2ε2 − q(ε1 − ε2)
. (4.1)

In Equation 4.1 ε1 is the inclusion permittivity, ε2 is the matrix material permittivity,

and q is the filling factor (i.e., the volume fraction of the inclusions). The quasistatic

assumption inherent to the development of Equation 4.1 is that the inclusion size is

much smaller than the EM wavelength so that the effective permittivity is independent

of frequency. The Maxwell Garnett mixing theory also assumes spherical non-touching

inclusions that are far apart [42], [56].

The classical Bruggeman mixing theory in three dimensions and for spherical inclu-

sions is [22]

(1− q) ε2 − εeff

ε2 + 2εeff

+ q
ε1 − εeff

ε1 + 2εeff

= 0. (4.2)

In effect, the Bruggeman rule for the effective permittivity weights the contribution of

the inclusions by q and that of the matrix material by (1− q) [56], [57].

The Maxwell Garnett and Bruggeman mixing laws can be combined into one uniform

equation [37], [44]:

εeff − ε2
εeff + 2ε2 + ν(εeff − ε2)

= q
ε1 − ε2

ε1 + 2ε2 + ν(εeff − ε2)
. (4.3)

where ν is a parameter used to describe a given mixing equation. Maxwell Garnett can be

obtained with ν = 0 and Bruggeman with ν = 2 [37], [44]. However, the classical mixing
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rules are not directly applicable to mixtures with arbitrarily shaped inclusions [42], [56].

The maximum, εeff,max, and minimum, εeff,min, possible effective permittivities of a

mixture are described by the Wiener bounds [36], [37], [44]:

εeff,max = qε1 + (1− q)ε2 (4.4)

εeff,min =
ε1ε2

qε2 + (1− q)ε1
. (4.5)

These maximum and minimum Wiener bounds for permittivity correspond to capacitors

in a circuit connected in parallel or series respectively [36], [37]. These bounds are also

applicable when the permittivities of the components are complex [58].

4.3 Method of Simulation

Calculated or measured scattering (S-) parameters can be employed to find the effective

permittivity of a sample with a finite thickness d [49], [50], [51], [52], [56]. Here these

S-parameters are derived from a time-domain EM analysis using a Gaussian excitation

pulse. In particular, CST Microwave Studio [10], utilizing the time-domain FIT with hex-

ahedral meshing, is used for EM simulations. To confirm the accuracy of the simulations,

the number of mesh cells was increased until the effective permittivity converged to an

asymptotic value. To achieve a change in effective permittivity of less than 1%, at least

5,000,000 mesh cells were required. Computation used an 80 core machine with 160 GB

of RAM and clocking at 2.66 GHz.

The refractive index n of a sample of length d in the propagation direction can be
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calculated from the S-parameters (for excitation at Port 1) as [51], [52], [56]:

n = ±
{

1

kd
arccos

[
1

2S21

(1− S2
11 + S2

21)

]
+

2πm

kd

}
, (4.6)

where the free space wavenumber k = ω/c, ω is the angular frequency, and c is the speed

of light. The integer m indicates that multiple solutions are possible. Also, the relative

wave impedance z is defined as [51], [52], [56]:

z = ±

√
(1 + S11)2 − S2

21

(1− S11)2 − S2
21

. (4.7)

In Equation 4.6 and Equation 4.7 the S-parameters are normalized to the impedance

of free space, η. When d and the wavelength λ are comparable, obtaining a unique

result for n can be difficult. However in this chapter d is less than λ/4 at the frequency

analyzed, 1 GHz, so a unique result for n can be found and the default branch is used

with m = 0 and positive n in Equation 4.6. With a passive material <(z) is positive, so

in Equation 4.7 the positive branch is taken. These solutions for n and z can be used to

find the unambiguous effective permittivity for a nonmagnetic mixture as [51], [52], [56]:

εeff =
n

z
. (4.8)

From [51], the calculations in Equation 4.6 and Equation 4.7 utilize the transmission and

reflection coefficients for the mode that is propagating, which, for the situation analyzed

in this chapter, is TEM through 50 GHz.

Before the composites can be simulated in CST, their physical structure must first be

defined. The next section describes an automated process for creating complex mixtures.
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4.4 Automated Creation of Complex Composites

The manual creation of complex three-dimensional structures for use in engineering anal-

ysis is a major obstacle to analyzing physically realistic structures. A bias is invariably

imposed when a mixture is manually composed and the structure rarely is representative

of the process by which composites are fabricated. Properties such as packing density

and anisotropies that seem to easily occur in nature are very difficult to obtain with

manual arrangements. This section addresses the creation of complex three-dimensional

mixtures, comprising crystals embedded in a matrix, for subsequent EM analysis. The

physically realistic arrangement of the crystals is facilitated by the use of physics engine

software, specifically the Bullet physics library, which renders the realistic effects in ad-

vanced computer games. A composite mixture of crystals is created by pouring a series

of random crystals into a box with the crystals bouncing against each other and aligning

just as they do in the real world. Higher packing densities are obtained than can be rea-

sonably obtained with manual construction. The arrangement of the crystals obtained

reflects the real world alignment of asymmetric crystals. A composite is created here and

used with EM simulation software to investigate energy localization in materials.

Two of the biggest difficulties in the study of random materials are the inability of

humans to make something truly random and the manual writing of an input language to

describe the structures. However, significant research such as the detection and analysis

of energetic materials [1]–[5] can be aided through the automated creation and simulation

of complex crystalline mixtures. This section uses the Bullet physics library [11], tradi-

tionally used in gaming software, to create randomized non-overlapping irregular crystal

shapes with various orientations and sizes that become part of a mixture with many

crystals. This automated procedure can be run many times and can be used to create
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complex 3D crystal mixtures. Then this structure is imported into an EM simulation tool

to study how electric energy localizes in situations of many irregular crystals.

4.4.1 Creating Multiple Irregular Crystal Structures

A two-step process is required to perform EM simulation for mixtures involving many ir-

regular crystals. First, a structure must be created (a nontrivial process for mixtures with

many irregularly shaped and scaled non-overlapping crystals) before it can be simulated.

A model of a composite structure is created with physical simulation software using

the Bullet physics library. First, a set of bounding planes is constructed to form an outer

box. Then, variants of different irregular crystal shapes are created at random positions

above the box. An example of two of these differently shaped irregular crystals is given

in Figure 4.1.

To fill each outer box, approximately 500 individually scaled and rotated irregular

crystals are created. For these studies a total of seven different crystal shapes are made

before they are scaled and rotated. Each crystal has a nominal size of roughly 0.15 mm on

each side, and each dimension is scaled by a factor ranging from 0.1 to 1 with a Gaussian

distribution, to represent crystals of varying sizes within a mixture. Even at a scaling

factor of 1, the size of a crystal is much smaller than the EM wavelength.

The physics simulation library simulates the crystals falling into the box, rotating,

pushing against each other and being moved by other crystals until they settle. The top of

the box is closed with another bounding plane, deleting any crystals that extend outside

of the box. At this point none of these irregular crystals are touching. This process of

utilizing the falling crystals is repeated to obtain an array of unique structures. Each

time the simulation is run a different mixture is created. Figure 4.2 and Figure 4.3 show
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Figure 4.1: An example of two different irregularly shaped inclusion crystals, one with
8 sides (left) and one with 7 sides (right) as created using the Bullet physics library.
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Figure 4.2: Unique structure created with 550 irregular crystals inside an outer box
(with 19.5% of the outer box volume containing crystals) as created using the Bullet
physics library.

two of these structures. The packing densities obtained by manually inserting crystals

reached as high as 11%, while the packing densities from using the Bullet physics library

reached 42%. This level is representative of the packing densities obtained with realistic

structures [59].

After creating the irregular crystalline mixtures, they can then be imported into other

programs such as CST Microwave Studio for EM analysis using over 5,000,000 mesh cells

and an 80 core machine with 160 GB of RAM and operating at 2.66 GHz.

A structure with many irregular crystals is created at a certain volume fraction us-

ing the Bullet physics library with output of the physics library using Visual Basic for
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Figure 4.3: Unique structure created with 500 irregular crystals inside an outer box
(with 21.4% of the outer box volume containing crystals) as created using the Bullet
physics library.
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Figure 4.4: The same mixture shown in Figure 4.2 along with waveguide excitation ports
after it has been imported into CST Microwave Studio for EM simulation.

Applications (VBA) code. The code is written against CSTs application programming

interface (API) then imported into CST Microwave Studio for EM analysis. The structure

in Figure 4.2 is shown in Figure 4.4 but now in the CST Microwave Studio environment

along with waveguide excitation ports 1 and 2 used in simulation. Similarly, the complex

mixture in Figure 4.3 as seen within CST Microwave Studio is given in Figure 4.5.

By using CST Microwave Studio, an EM pulse can be propagated through the com-

posite incident at either ports 1 or 2 in Figure 4.4 and Figure 4.5. The time-domain solver

within CST is used to propagate a Gaussian pulse (with frequency content of 0 to 50

GHz) through the mixtures in Figure 4.4 and Figure 4.5. Results of this simulation can
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Figure 4.5: The same mixture from Figure 4.3 with waveguide excitation ports after it
has been imported into CST Microwave Studio for EM simulation.
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be used to study how EM energy behaves and localizes in time when traveling through

these complex irregular mixtures.

4.4.2 Localization of Electromagnetic Energy

In CST, the irregular crystals are given a relative permittivity of 28 surrounded by matrix

material with a relative permittivity of 1, so that the permittivity contrast between

the crystals and the surrounding material is high. Following EM simulation the near-

maximum electric energy density obtained for the structure in Figure 4.4 is shown in

Figure 4.6, and for the structure in Figure 4.5 in Figure 4.7. Both densities are at the

specific time of 44 ps. In Figure 4.6, the electric field is polarized along the x axis and

the EM wave propagates in the positive z direction (down). In Figure 4.7, the electric

field is polarized along the x axis and propagation is in the negative z direction (up).

The combination of crystals in Figure 4.6 is different than the combination of crystals

in Figure 4.7, since the process of creating, scaling, and combining the crystals is per-

formed independently. So, EM energy travels through a different combination of crystals

with each EM simulation run and both structures show high electric energy density. Lo-

calization occurring on the edges and corners of the crystals is present for both Figure 4.6

and Figure 4.7, as has been presented previously for crystals with a fractal shape [45].

As detailed in this section, an automated creation method of irregular crystal based

composites using the Bullet physics library has been used to study EM propagation

through complex mixtures. Electric energy was found to localize on several of these

irregular crystals. While it would be an arduous task to create each crystal individually

by hand, the procedure described allows many irregular crystals to combine in close

proximity with each other. Complex structures can therefore be created in a reasonable
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Figure 4.6: Mixture from Figure 4.4 showing high energy density on crystal corners and
edges.
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Figure 4.7: Mixture from Figure 4.5 showing high energy density on corners and edges
for a different irregular mixture.
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amount of time. Once the complex mixtures are formed, they can then be imported into

other programs for further analysis.

4.5 Multiple Crystal Mixtures

Now that a process to establish complex combinations of irregular crystals has been estab-

lished, mixtures involving many irregular crystals are created within CST before their EM

properties are defined. In this section the effective permittivity of various two-component

mixtures is derived. The mixtures have variously shaped crystal inclusions having first

low and then high permittivity contrast with the embedding matrix. The mixtures in-

volving many irregular and cube-shaped crystals created in the CST Microwave Studio

environment were defined using an automatic procedure based on computer gaming soft-

ware [60]. In particular, a computer game was created in which crystals (the inclusions)

were poured into a box and the physics engine of the game [11] modeled the jostling and

bouncing of the crystals as they packed under gravity.

4.5.1 Crystal Structures in CST Microwave Studio

The irregular crystals used as inclusions have a maximum size of 0.19 mm as used in [56].

A scaling factor in the range of 0.1 to 1 (and so the crystal sizes are much smaller than

a wavelength at 50 GHz) was then used to randomly assign sizes to each crystal. The

different scaling factors for each crystal create a structure with an array of crystal sizes

but each crystal has the same shape. An example of a complex mixture with irregularly

shaped crystal inclusions in the CST Microwave Studio environment is given in Figure 4.8.

Additional mixtures were created still exhibiting a disordered arrangement of crystals,

but this time with crystals shaped as cubes. An example of such a structure is shown
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Figure 4.8: A total of 978 irregularly shaped inclusion crystals inside of a block (with
side length of 1.37 mm) in a TEM simulation environment. The volume fraction of the
inclusions is 27.5%.
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Figure 4.9: A total of 1,144 disordered cube inclusion crystals (each with side length of
0.085 mm) inside of a vacuum outer block (with side length of 1.37 mm). The volume
fraction of inclusions is 27.5%.

in Figure 4.9. In both Figure 4.8 and Figure 4.9 none of the crystals are touching (a

separation that can be controlled) and the crystals are surrounded by matrix material

with a relative permittivity of 1.

EM propagation through the materials was modeled by placing the structures into a

parallel plate transverse EM (TEM) environment [45], [56]. Waveguide excitation Ports

1 and 2 are defined on the propagation axis, the z axis in Figure 4.8 and Figure 4.9,

and perfectly matched layer (PML) boundary conditions at the x-y boundaries. This

eliminated reflections from the boundary planes back into the TEM structure. With

the crystal structure fixed, but with the boundary conditions changed appropriately,
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propagation in the x and y directions were also analyzed. To obtain the S-parameters to

be used in Equation 4.6 and Equation 4.7, measurements were de-embedded to the surface

of the cubes in Figure 4.8 and Figure 4.9. Effective permittivity was then determined

using Equation 4.8 and a Gaussian pulse excitation signal with frequency content up to

50 GHz, as in [56].

4.5.2 Low Permittivity Inclusions

First, irregularly and cube shaped inclusions of mica-like crystals having low relative

permittivity were considered to establish a lower permittivity contrast scenario between

matrix and inclusions. Specifically, mica has a relative permittivity of 5.4 and a tan δ of

0.0006 measured at 1 GHz [55]. Propagation was analyzed for each orthogonal propaga-

tion axis, representing Ex, Ey, and Ez polarizations. These results were then averaged

to obtain a single effective permittivity (as described in [40], [41], [44], [56]). Results of

effective permittivity at 1 GHz are compared to the Maxwell Garnett and Bruggeman

mixing theories and the Wiener bounds in Figure 4.10.

Figure 4.10 indicates that the simulated effective permittivities for the low permittiv-

ity contrast situation are close to the results predicted by Bruggeman up to a 40% volume

fraction. (This volume fraction is approximately the limit of what can be obtained using

irregularly shaped crystals of various sizes [60].) The simulated effective permittivities

for the cube crystals and the irregularly shaped crystals at the same volume fraction

differ by less than 0.5%. This indicates that, with low permittivity contrast, the effective

permittivity of mixtures with many inclusions in a disordered arrangement has very little

dependence on inclusion shape.
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Figure 4.10: Plots of real effective relative permittivity, <(εeff), versus various filling
factors for low permittivity irregular and cube inclusion crystals along with various mixing
theories.
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Figure 4.11: Plots of real effective relative permittivity, <(εeff), as a function of filling
factor for high permittivity irregular and cube inclusion crystals along with various mixing
theories.

4.5.3 High Permittivity Inclusions

The above simulations were repeated with the same structures, but this time with in-

clusion crystals of a higher permittivity yielding a higher permittivity contrast with the

matrix material. To represent zirconia-like inclusions the crystals now have a relative

permittivity of 28 with a tan δ of 0.0009 taken at 1 GHz [55], [56]. Results of effective

permittivity at 1 GHz for irregularly shaped and cube inclusions are given in Figure 4.11.

In Figure 4.11 the simulated results fall within the Wiener bounds as expected. The

effective permittivities for the irregular inclusions and cube inclusions for this high con-

trast situation also fall between the results predicted by Maxwell Garnett and Bruggeman
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and are close to each other. Numerically, of the eight simulated volume fractions for the

mixtures with cube inclusions (as can be seen in Figure 4.11), six differ from the irregular

inclusion results on average by 1% or less. The greatest percent difference is 2.5% (with

an absolute difference in effective permittivity of approximately 0.07 occuring at 32.5%

volume fraction). Figure 4.11 shows that even with a high permittivity contrast (here

28 to 1), the effective permittivity of composite mixtures with hundreds of disordered

crystals still has very little dependence on inclusion shape. Earlier research [38], [40], [45]

has shown significant differences in effective permittivity between inclusions of different

shapes for single-inclusion mixtures. Also, there was no significant convergence in the

effective permittivity results when up to eight of each type of inclusion were analyzed

[38].

4.6 Overall Inclusion Structure and Permittivity

This section explores in greater detail how the overall arrangement of inclusions influ-

ences the individual extracted effective permittivity components (i.e., εeff,x, εeff,y, and

εeff,z components in the x, y, and z directions respectively) of a mixture.

4.6.1 High Permittivity Inclusions

The scenarios that lead to the maximum and minimum possible effective permittivity,

as described by the Wiener bounds, are when the inclusion material has the shape of a

plate [36]. For example, a structure having an effective permittivity corresponding to the

upper Weiner bound is given in Figure 4.12.

In Figure 4.12, the side length of the outer box is 0.91 mm and the thickness of the

plate in the z direction is 0.10 mm, giving a volume fraction of 11.0%. The Wiener bounds
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Figure 4.12: Structure showing a high permittivity inclusion arranged as a plate in
vacuum with 11.0% volume fraction.
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from Equation 4.4 and Equation 4.5 can be used to find the maximum and minimum

effective permittivity possible. For the structure in Figure 4.12, these bounds are found

to be 3.97 for the maximum <(εeff) and 1.12, changing the propagation direction, for the

minimum <(εeff).

These results will now be compared to the simulated effective permittivities. For the

structure in Figure 4.12 the extracted effective permittivity depends on the axis of the

electric field polarization. The structure in Figure 4.12 has the same electrical properties

for x- and y-directed electric fields. For x and y polarization <(εeff) from simulation was

found to be identical, i.e. 3.97. Notably, this corresponds to the maximum Wiener bound.

For z-directed electric field, <(εeff) from simulation was found to be 1.13, nearly identical

to the minimum Wiener bound.

So, as described in [36], these results confirm that the maximum effective permittivity

at a given volume fraction occurs when the largest face of the inclusion plate is parallel to

the electrical polarization of the TEM field. The minimum effective permittivity occurs

when the largest face of the inclusion plate is perpendicular to the electrical polarization

of the TEM field.

4.6.2 Relationship to Cross-Sectional Area

In an effort to relate the arrangement of the plate in Figure 4.12 to the maximum or min-

imum effective permittivity, the cross-sectional areas of the inclusion from Figure 4.12

are studied. Analyzing Figure 4.12, the maximum effective permittivity occurs when the

inclusion has the minimum possible cross-sectional area normal to the direction of the

electric field polarization. In this scenario, the narrow edge of the plate is ‘seen’ first by the

electric field. Conversely, the minimum effective permittivity occurs when the inclusion
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has the maximum possible cross-sectional area normal to the electric field polarization

direction. Here, the wide face of the plate is presented to the incident electric field. So,

this suggests that, for an inclusion shaped as a plate, there is an inverse relationship

between the presented cross-sectional area of the inclusion and the effective permittivity

of the mixture. This conclusion is consistent with [56] where a similar inverse relation-

ship between effective permittivity and cross-sectional area was developed for a single

arbitrarily shaped inclusion crystal.

To investigate the cross-sectional area relationship for structures containing many

inclusions, a mixture containing irregular crystals with a 15% volume fraction, as shown

in Figure 4.13, and a mixture containing cube crystals also with a 15% volume fraction,

as shown in Figure 4.14, were considered. Cross-sectional area was calculated using rays

cast along the appropriate axis using the Bullet physics library [11]. For example, to

determine the cross-sectional area presented by crystals from the perspective of the x

axis, the y-z face of the outer box is divided into an N × N grid (here N = 500). For

every point on the grid, a ray is cast perpendicularly to the y-z face (in the x direction)

from one side of the outer box to the other. If the ray hits a crystal, a hit is recorded.

The cross-sectional area of the crystals, Acrystals, is then defined as:

Acrystals = MAcell, (4.9)

where M is the number of hits and Acell is the area of one grid cell. The cross-sectional

area fraction, Aw, (w=x, y or z) is further defined for a given axis perspective (the x

direction is used as an example here) as:

Ax =
Acrystals

Atotal

, (4.10)
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Figure 4.13: Structure showing 894 high permittivity irregular inclusions inside a vac-
uum outer block (with side length 1.46 mm). The volume fraction of inclusions is 15%.
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Figure 4.14: Structure showing 624 high permittivity cube inclusions (each with side
length 0.085 mm) inside a vacuum outer block (with side length 1.37 mm). The volume
fraction of inclusions is 15%.
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Figure 4.15: Real effective permittivity, <(εeff), plotted as a function of cross-sectional
area fraction, Aw. The volume fraction of inclusions is 15%. The letters near the data
points indicate the electric field polarization axis for each type of crystal as well as the
cross-sectional area fraction direction.

where Atotal is the total area of the outer box. The cross-sectional area of crystals and

cross-sectional area fraction are calculated in this manner for the x, y, and z directions

independently.

With high permittivity inclusions at 15% volume fraction, the effective permittivi-

ties and corresponding cross-sectional area fractions, Aw, for each axis are given in Fig-

ure 4.15. Comparing all cases presented in Figure 4.15, the highest cross-sectional area

fraction value corresponds to the lowest effective permittivity component and vice versa,

suggesting an inverse relationship.

The differences in magnitude of the effective permittivity among the polarizations as
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presented in Figure 4.15 can be qualitatively related to the cross-sectional area fraction

differences by analyzing the mixtures in Figure 4.13 and Figure 4.14. Based on the way

the irregular structures are created using the Bullet physics library, the crystals fall from

above (with respect to the y axis) and fall to the bottom of the outer box before settling.

The crystals therefore become tightly packed on the bottom of the box as can be seen in

Figure 4.13 and Figure 4.14.

This means that from the perspective of the y axis, the inclusion crystals have a high

cross-sectional area fraction, Ay. From the perspective of the x and z axes, the cross-

sectional areas of the inclusions are relatively small, and so Ax and Az are smaller. This

can also be seen in Figure 4.13 and Figure 4.14, where from the perspective of the x and

z axes the upper part of the box is the background material (with relative permittivity

of 1).

Relating this to the permittivity values, a high Aw from the perspective of the TEM

electric field polarization axis, w, leads to a low effective permittivity (e.g. here Ay is high

and the effective relative permittivity component in the y direction, εeff,y, is low) while

the other polarizations have lower Aw and higher effective permittivity. This is the same

inverse relationship demonstrated by the plate of Figure 4.12. Since the crystals do not

form a complete plate in any direction, the maximum or minimum possible permittivity

values as given by the Wiener bounds are not reached. However, based on the way the

crystals are packed in the box in Figure 4.13 and Figure 4.14, they are quite dense

and close to the sides of the box. In this situation it can be said that the inclusions

exhibit plate-like behavior. This can be seen through the sharing of an inverse relationship

between cross-sectional area fraction and effective permittivity for both the plate and the

densely packed crystals. This correspondence is seen for all of the simulation results for

low and high permittivity inclusions presented in Figure 4.10 and Figure 4.11 respectively.
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Since all of the simulations covering the various volume fractions in Figure 4.10 and

Figure 4.11 were created in the same manner (the crystals falling into the box along the

y axis and then settling) Aw for all simulations was greatest looking along the y axis (i.e.

w=y), and Ey polarization always yielded the smallest effective permittivity component.

4.7 Energy Localization

The other important phenomenon that characterizes the electrical response to a pulsed

microwave signal is energy localization, in particular the concentration of electric energy

in a nonmagnetic composite. Composites respond to temporal energy localization by

delaminating and changing chemical phase. Also, identifying energy localization can be

used as a diagnostic tool. Many of these effects respond over a short time interval so that

it is the transient time-domain EM response that is more important than the steady-state

response provided by a frequency-domain EM analysis. Energy has been found to localize

on the edges and corners of single inclusions [45], [56]. This section explores localization

phenomena taken using time-domain monitors for mixtures containing many crystals

close together, highlighting phenomena neglected by steady-state analyses.

4.7.1 High Permittivity Inclusions

First, electric energy density is plotted for a complex mixture with 32.5% volume fraction.

An example showing near-maximum electric energy density in a high permittivity (with

a real relative permittivity of 28) inclusion mixture for electric field polarized along the

x axis and positive z propagation direction is given in Figure 4.16. The excitation signal

is a Gaussian pulse with frequency content up to 50 GHz. The side length of the outer

box in Figure 4.16 is 1.37 mm. The bottom right black circle shown in Figure 4.16 has a
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Figure 4.16: Near-maximum electric energy density showing localization at inclusion
corners and edges, with highest localization in the bottom two circles. The electric field
is polarized along the x axis and the propagation direction is positive z (down). The
volume fraction is 32.5%.

diameter of approximately 0.12 mm. For reference, in vacuum the wavelength at 1 GHz

is 300 mm and at 50 GHz is 6 mm. With εr = 28, the wavelength at 1 GHz is 56.69 mm

and at 50 GHz is 1.13 mm. From Figure 4.11, the effective permittivity for this composite

was calculated as 2.97. With a relative permittivity of 2.97, the wavelength at 1 GHz is

174.08 mm and at 50 GHz is 3.48 mm. Comparing these sizes, the energy localization

shown in Figure 4.16 occurs on the order of 0.01λ or less, a fine resolution in terms of

wavelength.

The near-maximum energy density is shown in Figure 4.16 at 48.1 ps. The energy

localizes to the greatest extent on the edges and corners of the irregular inclusions shown
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Figure 4.17: Electric energy density with the same conditions as in Figure 4.16, but with
propagation in the reverse direction (up). The strong localization from Figure 4.16 is not
seen in the bottom two circles. Instead, there is higher localization in the top circle.

inside the bottom two circles in Figure 4.16 after the signal has passed through many

other inclusions. Propagation in the reverse direction, along the negative z axis (up),

results in the near-maximum electric energy density scenario in Figure 4.17. This image

is taken at the same time and plane as the structure shown in Figure 4.16. The only

difference in simulation conditions between Figure 4.16 and Figure 4.17 is an opposite

direction of propagation.

The crystal indicated by the upper circle in Figure 4.17 shows greater energy density

compared to the same location in Figure 4.16. Conversely, the energy density on the

crystals indicated by the bottom two circles is smaller. Comparing Figure 4.16 and Fig-

ure 4.17, the electric energy density localizes with different magnitudes depending on the
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direction of propagation of the EM signal. At specific locations, indicated by the black

circles in Figure 4.16 and Figure 4.17, the magnitude of the energy density at the edges

and corners is higher when the signal has traveled through more scatterers.

As an additional test, the Gaussian pulse duration was extended, with the frequency

content ranging from 0 to 25 GHz. The energy was seen to localize in the same locations

with the same localization behavior as for the 0 to 50 GHz bandwidth excitation used

in Figure 4.16 and Figure 4.17. Halving the frequency range allowed the Gaussian pulse

duration to double from 71 ps to 142 ps. Comparing the peak localization magnitudes

with Port 2 excitation, for the 0 to 50 GHz excitation the maximum monitored energy

density was 0.0768 J/m3, while for the longer 0 to 25 GHz excitation the maximum was

0.0992 J/m3. Overall, this result suggests that a longer excitation time can result in a

higher peak localization magnitude.

For the situations represented in Figure 4.16 and Figure 4.17, the peak input power is

1 W. This is input over the entire port face, which has a side length of 1.37 mm. Assuming

this 1 W is input for the 0 to 50 GHz Gaussian pulse duration, 71 ps, means that the total

input power is 7.1×10−11 J. In order to find an energy density entering the structure, it is

necessary to find the wavelength using the calculated effective permittivity of 2.97 so that

the effective group velocity is 1.74×108 m/s. Since the Gaussian pulse duration is 71 ps,

the length of the pulse in the medium is 0.012 m. Multiplying this by the input port area

gives an input volume of 2.25×10−8 m3. Then, the energy density entering is the input

power divided by this volume, i.e. 0.0032 J/m3. Comparing this value to the peak energy

density of 0.0768 J/m3 in Figure 4.16, this means that here there is an energy density

increase of 24 times represented by this energy localization.

The physical interpretation is that the energy localization maximum occurs when

signals following multiple scattering paths coalesce at the same time and position. Such
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a hotspot is unlikely to occur at the surface of a composite but within the material

after multiple scattering events have occurred but before the signal has been significantly

attenuated.

4.7.2 Electric Fields for Irregular Inclusions

To gain a better understanding of the localization behavior occurring in the circles in

Figure 4.16 and Figure 4.17, simulation probes were inserted to measure the electric field

magnitudes over the course of the simulation. The electric fields at the location indicated

by the bottom right circles in Figure 4.16 and Figure 4.17 are given in Figure 4.18, at the

bottom left circles are given in Figure 4.19, and at the top circles are given in Figure 4.20.

In Figure 4.18 through Figure 4.20, the electric field localizes at specific crystal corners

and edges to a greater amount when the EM signal has previously traveled through more

scatterers. From Figure 4.18 and Figure 4.19, peak energy localization at the bottom

crystals occurs after the signal has traveled from top to bottom. The energy density

for this positive z propagation direction is shown in Figure 4.16 at the time indicated

in Figure 4.18 and Figure 4.19, i.e. 48.1 ps. From Figure 4.20, peak localization at the

top crystal occurs after the signal travels from bottom to top, with energy density for

this negative z propagation direction at the time indicated in Figure 4.20, 48.1 ps, given

in Figure 4.17. The electric field probes from Figure 4.18 through Figure 4.20 confirm

the results of energy density from Figure 4.16 and Figure 4.17 that traveling through a

greater number of inclusions increases localization magnitude at a specific location. Next,

this behavior is studied for a simpler case of identical inclusions placed on an organized

grid.
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Figure 4.18: Comparison of the electric field at the crystal corner indicated by the bot-
tom right circle in Figure 4.16 and Figure 4.17 with propagation direction. At 48.1 ps
there is a significant difference in the electric field and electric energy density depending
on propagation direction. Higher peak localization is seen with the positive propaga-
tion direction (down) when the EM signal has traveled through more of the irregular
surrounding material.
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Figure 4.19: Comparison of the electric field at the crystal corner indicated by the bot-
tom left circle in Figure 4.16 and Figure 4.17 with propagation direction. Higher peak
localization is seen at 48.1 ps with the positive propagation direction (down) when the
EM signal has traveled through more of the irregular surrounding material.
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Figure 4.20: Comparison of electric field for the top circle in Figure 4.16 and Figure 4.17
with propagation direction. At 48.1 ps there is a significant difference in the electric field
and electric energy density depending on propagation direction. Higher peak localization
is seen with the negative propagation direction (up) when the EM signal has traveled
through more of the irregular surrounding material.
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Isolated cubes

Back cubes

Figure 4.21: Cube-shaped inclusions arranged in two planes. On the right are the isolated
cubes and on the left are the back cubes.

4.7.3 Behavior for Cube-shaped Inclusions

From Section 4.7.2, the electric field localization magnitude was seen to increase when

the EM signal traveled through a greater number of scatterers. This section studies elec-

tric field localization for a less complicated mixture with high permittivity cube-shaped

inclusions on a regular three-dimensional grid. The aim of this study is to determine if a

simpler simulation environment yields similar energy localization results. First, two par-

allel layers of cubes in the x-y plane are created as shown in Figure 4.21. Each cube has

a side length of 0.1 mm. The left x-y plane in Figure 4.21 has 20 cubes placed randomly

within the plane, two of which are referred to as the back cubes. After the cubes have

been placed in the plane, the back cubes (the two closest cubes in this plane) are then
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Figure 4.22: Layers of cube-shaped inclusions are added between the layers in Figure 4.21
with an increasing number of inclusions in each layer.

shifted in the positive z direction with the same x and y coordinates in order to maintain

the same distance and orientation between the cubes but to isolate them in their own

x-y plane. This pair of cubes, to be referred to as the isolated cubes, are shown on the

right side of Figure 4.21. The two cubes are isolated in order to study the influence of

surrounding cubes within a plane on energy localization.

Next, additional cubes are placed in planes evenly spaced between those shown in

Figure 4.21. The resulting structure is shown in Figure 4.22. The distance between cubes

in two adjacent x-y planes in Figure 4.22 is 0.05 mm and none of the cubes are touching.

Behind the two isolated cubes on the right, going in the negative z direction (left), the
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Isolated cubes

Back cubes

Figure 4.23: The structure in Figure 4.22 (surrounded by vacuum) along with waveguide
ports for simulation.

next x-y plane has 1 cube, then 3, 5, 10, and 15 before the left-most plane with 20 cubes

is reached. Adding cubes in this manner gradually increases the number of inclusions

between the layers shown in Figure 4.21. The goal is to confirm the hypothesis that EM

propagation through more inclusions leads to an increase in the peak hotspot magnitude.

The total structure with all cubes along with the waveguide Ports 1 and 2 is given

in Figure 4.23. In Figure 4.23, the isolated cubes from Figure 4.21 and Figure 4.22 are

closest to Port 1 and the back cubes are closest to Port 2. The outer box in Figure 4.23

spans 0.8 mm in the x and y directions. The two ports are the same distance to the

nearest high permittivity cube in either direction, specifically 1.55 mm. The electric field

is polarized along the x axis and z is the propagation axis. The excitation signal is a 0
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2 Back cubes

Figure 4.24: Near-peak electric energy density for the back layer of cubes at 44 ps (time
of near-maximum energy density) with highest magnitude at the edges and corners of
the back cubes as indicated by the black circle. This occurs for Port 1 excitation.

to 50 GHz Gaussian pulse. The near-peak energy density location in the structure from

Figure 4.23 is shown in Figure 4.24.

In Figure 4.24, the highest energy density among all the cubes occurs at the edges

and corners of the back cubes with Port 1 excitation. Again, localization magnitude is

greater after the signal has traveled from Port 1 to Port 2 through a greater number of

scatterers. The plane of cubes shown in Figure 4.24 is the back layer with the highest

number of cubes (20) closest to Port 2. The back cubes indicated by the black circle in

Figure 4.24 have edges and corners closest to each other within that plane, and no edges
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Figure 4.25: Electric field magnitudes for four different locations in the structure in
Figure 4.23 as a function of time. Peak localization magnitude is reached for the back
cubes with Port 1 excitation after the signal has traveled through other scatterers.

between other adjacent cubes are closer in the entire structure. Overall, adjacent cubes

coming closer together also increases temporal energy localization.

Electric field probes can be used to gain an understanding of how the field magnitude

changes over time. Probes are utilized to measure the electric field at the edge of one of

the back cubes (encompassed by the circle in Figure 4.24) as well as the same relative

location but on the isolated pair of cubes closest to Port 1 (those indicated in Figure 4.23).

The results from these two probes, each probe measuring electric field with Port 1 and

Port 2 excitation independently, are summarized in Figure 4.25. The isolated cubes and

back cubes referenced in Figure 4.25 are analyzed because they represent the maximum

EM localization within the mixture shown in Figure 4.23. In Figure 4.25, electric field
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localization magnitudes are plotted as a function of time. As shown in Figure 4.21, there

are two pairs of cubes with the same orientation to each other: the isolated cubes and the

back cubes. One pair is surrounded by many other inclusions in the same plane (the back

cubes shown in Figure 4.21, in the plane of cubes closest to Port 2 in Figure 4.23, and

referenced in Figure 4.25) and the other pair is isolated in a plane by itself (the isolated

cubes shown in Figure 4.21, in the plane of cubes closest to Port 1 in Figure 4.23, and

referenced in Figure 4.25) to study the impact of surrounding inclusions. The two cubes

within a pair are the same distance from each other and differ only in their z coordinates.

Analyzing Figure 4.25, for the back cubes closely surrounded by other high permittiv-

ity cubes, the peak electric field magnitude is higher for both propagation directions (i.e.

for Port 1 and Port 2 excitation, representing propagation in the negative and positive z

directions respectively) than for either propagation direction for the isolated cubes in the

front. There are more scatterers in the back layer, so the localization magnitude is higher

than in the front where in that layer there are few scatterers. In summary, a greater

number of scatterers within a layer increases energy localization.

For the back cubes in Figure 4.25 (in the layer closest to Port 2 in Figure 4.23 and

Figure 4.24), looking at the differences caused by changing the propagation direction,

there is higher localization for Port 1 excitation than for Port 2 excitation. With excitation

at Port 1, the signal goes through six layers of scatterers to get to the back layer (each layer

can be seen independently in Figure 4.22). Port 2 excitation means that the back layer is

the first layer experienced by the signal. Since the EM field has not undergone previous

scattering events, the magnitude of localization is lower for this propagation direction.

Using the same reasoning as for the back layer, for the isolated cubes in Figure 4.25

(closest to Port 1 in Figure 4.23), Port 2 excitation yields higher localization because the

signal travels through more scatterers before reaching the isolated cubes.

105



Also from Figure 4.25, it is seen that the lowest overall localization magnitude occurs

when the isolated cubes (i.e. few cubes in a layer) are the first scatterers encountered by

the EM pulse. These are the isolated cubes closest to Port 1 in Figure 4.23 with Port

1 excitation. Conversely, the highest overall localization magnitude occurs for the back

cubes closest to Port 2 in Figure 4.23 with Port 1 excitation (at the location encompassed

by the circle in Figure 4.24). In this situation there are the most scatterers within the

layer and the signal has traveled through the highest number of scatterers to reach this

back point close to Port 2.

In [56], energy localization was found on the edges and corners of a single irregular

inclusion crystal. This chapter studied energy density behavior for mixtures with many

disordered irregular, as well as organized cube, inclusions. As the EM signal travels

through more scatterers, the peak energy density has been shown to increase even if

the inclusions are small compared to wavelength. These results suggest that a direct

relationship exists between the disorder introduced by an increasing number of inclusions

and localization magnitude.

4.8 Summary

The effective EM properties for mixtures involving many disordered crystals were stud-

ied. In particular, the crystal shape was found to have no appreciable impact on ef-

fective permittivity or energy localization behavior. The effective permittivity derived

from simulations deviates from that calculated using conventional Maxwell Garnett and

Bruggeman mixing theories. This departure is especially significant when there is a high

permittivity contrast between the inclusions and the embedding matrix. This is so when

the inclusions have irregular or regular shapes. For mixtures with hundreds of crystals,
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the effect of individual inclusion shape and orientation on effective permittivity appar-

ently averages out. As expected, inclusions in the form of a plate yield either maximum

or minimum effective permittivity depending on the cross-section presented to the EM

signal. In general a strong inverse relationship was found between the cross-sectional area

presented by the inclusions and the effective permittivity of the mixture. While estab-

lished mixing laws are functions of individual permittivity values and volume fraction,

this chapter showed that cross-sectional area is also an important parameter to consider

when determining the effective permittivity of mixtures of finite thickness.

Energy was seen to localize within mixtures containing many inclusions. The specific

location of EM localization is on edges and corners of adjacent inclusions that are close

to each other in the direction of electric field polarization. Temporal maximum energy

density occurs only after appreciable scattering has occurred but before the EM signal

has been attenuated.
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Chapter 5

Summary and Future Work

5.1 Summary of Research

This dissertation presented an overview of effective permittivity and EM localization be-

havior for various types of composite mixtures. The complexity of these mixtures was

increased throughout the dissertation. In Chapter 3, the examined composites included

those with a single cube inclusion, a single irregular inclusion, and many ordered cube

inclusions placed on a regular grid. In Chapter 4, the composites were much more com-

plex, and included mixtures with hundreds of regularly- and irregularly-shaped inclusions.

The research describing the characterization of composites within this dissertation can

be useful for various applications. These include current research areas such as struc-

ture demolition and demining, as well as future areas such as the study of Carbon Fiber

Reinforced Composites (CFRCs).

In Chapter 3, two-component composites were examined consisting of cube and

irregularly-shaped inclusions. Time-domain EM modeling was used to calculate effective

permittivities and to examine energy localization behavior for these composites. Both
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high and low permittivity contrast situations were used and the components studied

included the explosive material HMX.

With irregularly shaped inclusion crystals, effective permittivities were calculated for

each of three orthogonal propagation directions (x, y, and z). The irregular structures

were not symmetric with respect to all polarization directions, and so the effective permit-

tivity showed directional dependency. However, for the same electric field polarization,

effective permittivity was independent of forward or backward propagation direction. To

calculate effective permittivity, the composites were placed within a TEM environment.

This environment was created by setting one pair of opposite faces as electric walls, an-

other as magnetic walls, and the last as open boundaries that eliminated reflections back

into the TEM environment.

The first examined situation involved HMX inclusions, representing low permittivity

contrast between inclusion and matrix material. In situations of low permittivity contrast,

the shape of the inclusion had little impact on effective permittivity up to a volume

fraction of 0.45. With this low permittivity contrast, the Maxwell Garnett and Bruggeman

mixing theories could be used up to a volume fraction of 0.45 with 1% error. With high

permittivity contrast, significant differences were found from the classical mixing rules,

Maxwell Garnett and Bruggeman, for volume fractions above 0.05. So, for high filling

factors the traditional mixing theories did not accurately predict the effective permittivity

of irregularly shaped mixtures with high permittivity contrast between inclusion and

surrounding material.

Mixtures with cube inclusions placed on an ordered grid were also examined in Chap-

ter 3. This highly ordered scenario allowed the entire range of volume fractions to be

simulated. The effective permittivities for these composites were found to be close to the

results predicted by Maxwell Garnett for all volume fractions.
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Energy localization behavior was examined with negligible differences found between

mirrored and periodic boundary conditions. For both types of boundary conditions, elec-

tric energy localized on edges and corners of the irregular inclusion. The specific edges

and corners were those closest to the adjacent crystal in the direction of electric field

polarization.

Also in Chapter 3, the inclusion crystals were rotated and the orientation of the inclu-

sions with high permittivity contrast impacted the effective permittivity of the composite.

First, a cube inclusion at 10% volume fraction was rotated around the x, y, and z axes

independently. With the electric field polarized in the x direction, effective permittivity

was determined for each rotation point. Then, a 20% volume fraction cube was rotated

around each axis with the electric field also polarized in the x direction. Finally, in a

more complex scenario, rotation was performed for an irregular inclusion at 20% volume

fraction. The irregular inclusion was rotated around the x, y, and z axes independently

and the electric field was polarized in either the x, y, or z direction. For all of the ro-

tation scenarios, negligible changes in effective permittivity resulted when the inclusion

was rotated about the same axis as the electric field polarization. However, variations in

effective permittivity resulted from rotations about the other axes.

Plots were also provided showing changes in cross-sectional area fraction as each inclu-

sion was rotated. The variation in the cross-sectional area fraction from the perspective

of a given axis was highly correlated to changes in effective permittivity with the elec-

tric field polarized along the same axis. If the cross-sectional area fraction changed or

remained constant, the effective permittivity also showed the same behavior. An inverse

relationship between cross-sectional area fraction and effective permittivity developed

when a significant portion of the inclusion crystal approached the outer box, or adja-

cent inclusions. Differences in effective permittivity from rotation of the inclusion crystal
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correspond to a probe moving around a specific compound.

In Chapter 4, the complexity of the examined composites was increased compared to

those studied in Chapter 3. EM properties of mixtures were explored further by examining

structures with many irregular and cube inclusion crystals in a disordered arrangement.

The crystals had both low and high permittivity contrast with the surrounding material.

With low permittivity inclusions, the results of effective permittivity were close to the

predictions of Bruggeman up to a volume fraction of 40%. For the same volume fraction,

the effective permittivities for the irregular and cube inclusion crystal mixtures differed

by less than 0.5%. So, with hundreds of disordered inclusion crystals and a relatively low

permittivity contrast, the effective permittivity of mixtures had very little dependence

on inclusion shape.

Next, the crystals were given a higher relative permittivity. In this situation the

effective permittivity results were within the Wiener bounds (as expected) and were also

between the results predicted by Maxwell Garnett and Bruggeman up to a volume fraction

of 40%. With this high permittivity contrast, a majority of the results between irregular

and cube inclusion crystals differed by 1% or less at the same volume fraction. Here,

even with a high permittivity contrast (28 to 1) there was still very little dependence on

inclusion shape for effective permittivity.

The relationship between overall inclusion structure and effective permittivity was

also examined. Specifically, investigations were performed looking into how the arrange-

ment of inclusions impacted the individual extracted effective permittivity components

corresponding to each direction of electric field polarization. The Wiener bounds rep-

resent the maximum and minimum possible effective permittivity for a composite and

result from an inclusion in the shape of a plate. The maximum and minimum possible ef-

fective permittivities correspond to capacitors connected in parallel or series respectively.
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As a test, an inclusion in the shape of a plate at 11% volume fraction was examined in

CST Microwave Studio. As expected, the extracted effective permittivities corresponded

to the results predicted by the Wiener bounds.

The maximum effective permittivity at a given volume fraction resulted when the

largest face of the inclusion plate was parallel to the electric field polarization of the

TEM field. Conversely, the minimum effective permittivity resulted when the largest

face of the inclusion plate was perpendicular to the direction of electric field polarization.

These results were then related to the cross-sectional areas of the inclusion shaped

as a plate. The maximum possible effective permittivity resulted when the inclusion

had the minimum possible cross-sectional area normal to the direction of the electric

field polarization. Conversely, the minimum possible effective permittivity occurred when

the inclusion had the maximum possible cross-sectional area normal to the direction of

electric field polarization. Combining these results, there was an inverse relationship

between cross-sectional area of the inclusion and effective permittivity of the mixture for

an inclusion shaped as a plate.

This examination between cross-sectional area fraction and effective permittivity was

then extended to include mixtures with hundreds of inclusions. These mixtures with

hundreds of cube or irregularly-shaped inclusions had close groupings of inclusions on

the bottom of the outer box, forming an overall structure similar to a plate. The effective

permittivity was the smallest when the electric field was polarized along the axis from

which the inclusion crystals had the highest cross-sectional area fraction. Conversely, the

other axes had lower cross-sectional area fraction and higher effective permittivity. Thus,

a strong inverse relationship was also found between cross-sectional area fraction and

effective permittivity for many inclusions with this plate-like arrangement.

Chapter 4 also examined EM localization for two distinct arrangements of inclusions.
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The first type of mixture had hundreds of irregularly-shaped inclusion crystals of various

sizes. At a volume fraction of 32.5%, and with electric field polarized along the x direction,

electric energy density was examined for forward and reverse propagation directions.

The electric energy density localized with different peak magnitudes depending on the

propagation direction of the EM signal. At specific inclusion edges and corners close to

each other in the direction of electric field polarization, the magnitude of the energy

density increased as the EM signal traveled through more inclusions.

The second type of composite had dozens of cube inclusion crystals of the same

size, where the inclusions were separated into parallel planes and varying numbers of

inclusions were placed randomly in each plane. An increasing number of inclusions were

placed between the outer layers to gradually increase the number of inclusions in each

layer. The highest energy density resulted on the edges of adjacent cubes close together

after the EM signal traveled through the highest number of inclusions.

In addition to the energy density results, simulation probes enabled the electric fields

to be measured throughout the simulation at various points. For the irregular crystal

mixture, the electric field localized at crystal corners and edges to a greater amount when

the EM signal previously traveled through more scatterers. For the cube crystal mixture,

electric fields were measured for the isolated cubes and the back cubes surrounded by

many other inclusions (for opposite propagation directions, resulting in four different

electric field probe results). The lowest electric field localization magnitude among these

four cases occurred for the isolated cubes when these cubes were the first encountered

by the EM pulse. The highest localization magnitude occurred for the back cubes where

there were the most scatterers within that layer and the signal had traveled through

the highest number of scatterers to reach that back point. Overall, higher peak electric

field localization magnitude was reached after the EM pulse traveled through a greater
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number of inclusions for both irregularly-shaped inclusions in a disordered arrangement

and more organized cube crystals.

An important conclusion here is that the study of EM localization does not require

geometrically complex structures, such as those created with the irregular inclusion mix-

tures in Chapter 4. Simpler arrangements of regularly shaped inclusions exhibit similar

EM hotspot behavior, but with a significant decrease in mixture complexity.

5.2 Future Work

This dissertation examined various types of composite mixtures containing crystals of

differing shapes and sizes. One area that can be expanded upon in future research is an

increase in the irregularity of the crystals that are examined. For example, the deviation

in crystal shapes from one crystal to the next could be increased.

Complex mixtures with many irregular crystals were created with volume fractions

up to 42%. Future research could attempt to increase the maximum volume fractions

simulated, possibly through new procedures for creating crystalline mixtures.

The research in this dissertation showed similar EM localization behavior for complex

combinations of irregular crystals and more organized cube inclusions, with hotspots

occurring on inclusion edges and corners. With the knowledge that studies of hotspots can

be performed with relatively simple arrangements of inclusions, moving forward further

simplifications could be made.

One idea is to take the concept of using EM simulation software to examine combi-

nations of crystals within a surrounding material, as explored in this dissertation, and

make an abstraction to a study of transmission lines. A lossless transmission line has se-

ries inductance, L, represented by an inductor, and shunt capacitance, C, represented by
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a capacitor. LC tanks could be utilized to represent inclusion crystals. Inclusion corners

could be represented by LCs with characteristic impedance representative of a crystal, and

LCs connected together with this impedance could represent a complete crystal. These

‘crystals’ could be connected to each other by LCs with the characteristic impedance

of vacuum, representing the binder material around the crystals. Randomness could be

introduced here by changing the length of the transmission lines.

The transmission lines study can be expected to result in faster computation enabling

such things as optimum EM waveform design. Gaussian input pulses were used in this

dissertation in order to study a range of frequencies. The behavior of EM localization in

composites can be further understood by examining different types of input waveforms,

such as sinusoidal or rectangular inputs, and focusing on specific frequencies to search

for an optimal waveform or frequency leading to high localization. The study of energetic

materials in particular would be greatly aided with research showing increased hotspot

magnitude due to a certain type of excitation signal.
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Appendix A

MATLAB Code

A.1 Code to Calculate Effective Permittivity

This section contains an example of the MATLAB code used to import the simulated

S-parameters from CST Microwave Studio and then calculate effective permittivity. This

code is used for the data in Figure 3.9.

clear all;

load HMXTwentyEyR1.txt

load HMXTwentyEyT1.txt

S11_y_20 = HMXTwentyEyR1;

S21_y_20 = HMXTwentyEyT1;

r_y_20 = zeros(1001,1);

t_y_20 = zeros(1001,1);

n_y_20 = zeros(1001,1);

z_y_20 = zeros(1001,1);
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for i = 1:1001

r_y_20(i) = S11_y_20(i,2).*exp(1j*S11_y_20(i,3)*(pi/180));

end

for i = 1:1001

t_y_20(i) = S21_y_20(i,2).*exp(1j*S21_y_20(i,3)*(pi/180));

end

for i = 1:1001

f_y_20(i) = S21_y_20(i,1);

end

load HMXTwentyEyR2Fixed.txt

load HMXTwentyEyT2Fixed.txt

S11_y2_20 = HMXTwentyEyR2Fixed;

S21_y2_20 = HMXTwentyEyT2Fixed;

r_y2_20 = zeros(1001,1);

t_y2_20 = zeros(1001,1);

n_y2_20 = zeros(1001,1);

z_y2_20 = zeros(1001,1);

for i = 1:1001

r_y2_20(i) = S11_y2_20(i,2).*exp(1j*S11_y2_20(i,3)*(pi/180));
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end

for i = 1:1001

t_y2_20(i) = S21_y2_20(i,2).*exp(1j*S21_y2_20(i,3)*(pi/180));

end

for i = 1:1001

f_y2_20(i) = S21_y2_20(i,1);

end

load HMXTwentyExR1Fixed.txt

load HMXTwentyExT1Fixed.txt

S11_x_20 = HMXTwentyExR1Fixed;

S21_x_20 = HMXTwentyExT1Fixed;

r_x_20 = zeros(1001,1);

t_x_20 = zeros(1001,1);

n_x_20 = zeros(1001,1);

z_x_20 = zeros(1001,1);

for i = 1:1001

r_x_20(i) = S11_x_20(i,2).*exp(1j*S11_x_20(i,3)*(pi/180));

end

for i = 1:1001
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t_x_20(i) = S21_x_20(i,2).*exp(1j*S21_x_20(i,3)*(pi/180));

end

for i = 1:1001

f_x_20(i) = S21_x_20(i,1);

end

load HMXTwentyExR2Fixed.txt

load HMXTwentyExT2Fixed.txt

S11_x2_20 = HMXTwentyExR2Fixed;

S21_x2_20 = HMXTwentyExT2Fixed;

r_x2_20 = zeros(1001,1);

t_x2_20 = zeros(1001,1);

n_x2_20 = zeros(1001,1);

z_x2_20 = zeros(1001,1);

for i = 1:1001

r_x2_20(i) = S11_x2_20(i,2).*exp(1j*S11_x2_20(i,3)*(pi/180));

end

for i = 1:1001

t_x2_20(i) = S21_x2_20(i,2).*exp(1j*S21_x2_20(i,3)*(pi/180));

end
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for i = 1:1001

f_x2_20(i) = S21_x2_20(i,1);

end

load HMXTwentyEzR1Fixed.txt

load HMXTwentyEzT1Fixed.txt

S11_z_20 = HMXTwentyEzR1Fixed;

S21_z_20 = HMXTwentyEzT1Fixed;

r_z_20 = zeros(1001,1);

t_z_20 = zeros(1001,1);

n_z_20 = zeros(1001,1);

z_z_20 = zeros(1001,1);

for i = 1:1001

r_z_20(i) = S11_z_20(i,2).*exp(1j*S11_z_20(i,3)*(pi/180));

end

for i = 1:1001

t_z_20(i) = S21_z_20(i,2).*exp(1j*S21_z_20(i,3)*(pi/180));

end

for i = 1:1001

f_z_20(i) = S21_z_20(i,1);
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end

load HMXTwentyEzR2Fixed.txt

load HMXTwentyEzT2Fixed.txt

S11_z2_20 = HMXTwentyEzR2Fixed;

S21_z2_20 = HMXTwentyEzT2Fixed;

r_z2_20 = zeros(1001,1);

t_z2_20 = zeros(1001,1);

n_z2_20 = zeros(1001,1);

z_z2_20 = zeros(1001,1);

for i = 1:1001

r_z2_20(i) = S11_z2_20(i,2).*exp(1j*S11_z2_20(i,3)*(pi/180));

end

for i = 1:1001

t_z2_20(i) = S21_z2_20(i,2).*exp(1j*S21_z2_20(i,3)*(pi/180));

end

for i = 1:1001

f_z2_20(i) = S21_z2_20(i,1);

end

c=299.8;

127



d_Ex_20 = 0.260;

d_Ey_20 = 0.260;

d_Ez_20 = 0.260;

for i = 1:1001

n_y_20(i) = (acos((1/(2*t_y_20(i)))*(1-((r_y_20(i)).^2 -

(t_y_20(i)).^2)))+(2*pi*(0)))./((2*pi*f_y_20(i)*d_Ey_20)./c);

z_y_20(i) = sqrt(((1+(r_y_20(i))).^2 -

(t_y_20(i)).^2)./((1-(r_y_20(i))).^2 - (t_y_20(i)).^2));

end

for i = 1:1001

n_y2_20(i) = (acos((1/(2*t_y2_20(i)))*(1-((r_y2_20(i)).^2 -

(t_y2_20(i)).^2)))+(2*pi*(0)))./((2*pi*f_y2_20(i)*d_Ey_20)./c);

z_y2_20(i) = sqrt(((1+(r_y2_20(i))).^2 -

(t_y2_20(i)).^2)./((1-(r_y2_20(i))).^2 - (t_y2_20(i)).^2));

end

for i = 1:1001

n_x_20(i) = (acos((1/(2*t_x_20(i)))*(1-((r_x_20(i)).^2 -

(t_x_20(i)).^2)))+(2*pi*(0)))./((2*pi*f_x_20(i)*d_Ex_20)./c);

z_x_20(i) = sqrt(((1+(r_x_20(i))).^2 -

(t_x_20(i)).^2)./((1-(r_x_20(i))).^2 - (t_x_20(i)).^2));

end
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for i = 1:1001

n_x2_20(i) = (acos((1/(2*t_x2_20(i)))*(1-((r_x2_20(i)).^2 -

(t_x2_20(i)).^2)))+(2*pi*(0)))./((2*pi*f_x2_20(i)*d_Ex_20)./c);

z_x2_20(i) = sqrt(((1+(r_x2_20(i))).^2 -

(t_x2_20(i)).^2)./((1-(r_x2_20(i))).^2 - (t_x2_20(i)).^2));

end

for i = 1:1001

n_z_20(i) = (acos((1/(2*t_z_20(i)))*(1-((r_z_20(i)).^2 -

(t_z_20(i)).^2)))+(2*pi*(0)))./((2*pi*f_z_20(i)*d_Ez_20)./c);

z_z_20(i) = sqrt(((1+(r_z_20(i))).^2 -

(t_z_20(i)).^2)./((1-(r_z_20(i))).^2 - (t_z_20(i)).^2));

end

for i = 1:1001

n_z2_20(i) = (acos((1/(2*t_z2_20(i)))*(1-((r_z2_20(i)).^2 -

(t_z2_20(i)).^2)))+(2*pi*(0)))./((2*pi*f_z2_20(i)*d_Ez_20)./c);

z_z2_20(i) = sqrt(((1+(r_z2_20(i))).^2 -

(t_z2_20(i)).^2)./((1-(r_z2_20(i))).^2 - (t_z2_20(i)).^2));

end

%Plot effective permittivity using only positive propagation directions

plot(f_z_20,(1/3)*(real(n_y_20./z_y_20)+real(n_x2_20./z_x2_20)

+real(n_z_20./z_z_20)),’b’);
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axis([0.1 50 0 3]);

xlabel(’f (GHz)’);

ylabel(’Effective relative permittivity’);

title(’Real effective relative part of epsilon, Filling factor = 20%,

No rotation, Positive Excited Directions’);

grid on

%Plot real part of effective permittivity using all 6 (positive and

negative) propagation directions

figure(2)

plot(f_z_20,(1/6)*(real(n_y_20./z_y_20)+real(n_y2_20./z_y2_20)+

real(n_x_20./z_x_20)+real(n_x2_20./z_x2_20)+real(n_z_20./z_z_20)

+real(n_z2_20./z_z2_20)),’b’);

axis([0.1 50 0 3]);

grid on

xlabel(’f (GHz)’);

ylabel(’Real effective Relative Permittivity’);

title(’Real effective relative part of epsilon, Filling Factor = 20%,

No rotation, 6 Excited Directions’);
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A.2 Code to Plot Effective Permittivity and Mixing

Theories

This example MATLAB code is used to plot the results of effective permittivity versus

the Maxwell Garnett and Bruggeman mixing theories as seen in Figure 3.10.

clear all;

f =0:0.001:0.6;

e1 = 28-1j*0.0252;

e2 = 1-1j*0;

e_eff =(e2 +(3.*f.*e2.*(e1-e2))./(e1+2.*e2-f.*(e1-e2)));

plot(f,real(e_eff),’-k’);

xlabel(’Volume fraction’)

ylabel(’Real effective relative permittivity’)

grid on

hold on

a = 2;

b = (e1-3.*e1.*f-2.*e2+3.*e2.*f)

c = (-e2.*e1);

e_eff2 = (-b + sqrt(b.^2 - 4.*a.*c))./(2.*a);

plot(f,real(e_eff2),’--k’)

hold on

x_zirconia_pos = [0.1 0.2 0.25 0.3 0.35 0.4 0.45];
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y_zirconia_pos = [1.355 1.801 2.06 2.377 2.731 3.193 3.807];

x_zirconia_all_six = [0.1 0.2 0.25 0.3 0.35 0.4 0.45];

y_zirconia_all_six = [1.356 1.801 2.059 2.379 2.73 3.193 3.805];

plot(x_zirconia_pos,y_zirconia_pos,’sk’);

axis([0 0.47 0 12]);

hold on

plot(x_zirconia_all_six,y_zirconia_all_six,’+k’);

legend(’Maxwell Garnett’,’Bruggeman’,’Finite Integration Technique (FIT),

positive propagation directions’,’Finite Integration Technique (FIT),

six propagation directions’);

132


